Skip to main content
Log in

Facile Synthesis, Antioxidant and Antimicrobial Activities of Diethyl((4-isopropylphenyl)(substituted phenylamino)methyl)phosphonates

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The one-pot, three component and facile synthesis of diethyl ((4-isopropylphenyl) (substitutedphenylamino)methyl)phosphonate 4a4j has been achieved from the reaction of 4-isopropylbenzaldehyde 1 with various substituted amines 2a2j and diethyl phosphite 3 using Kabachnik–Fields reaction under room temperature and solvent free conditions using nano Cu2O as a stable, noncorrosive, low-cost, recyclable, eco-friendly heterogeneous catalyst. Furthermore, melting point, IR, NMR, and mass spectra were used to interpret this new series of compounds. The newly synthesized formulations were evaluated in vitro for antioxidant and antimicrobial activity, and they executed well when compared to the standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.

Similar content being viewed by others

REFERENCES

  1. Ali Khan, M., Rahman, A.A., Islam, S., Khandokhar, P., Shahnaj Parvin, S., Islam, M.B., Hossain, M., Rashid, M., Sadik, G., Nasrin, S., Mollah, M.N.H., and Khurshid, A.H.M., BMC Res. Notes, 2013, vol. 6, no. 24, p. 1. https://doi.org/10.1186/1756-0500-6-24

  2. WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2011. WHO, Geneva, Switzerland: 2013.

  3. Gupta, M., Sharma, R., and Kumar, A., Orient. Pharm. Exp. Med., 2019, vol. 19, no. 1, p. 259. https://doi.org/10.1007/s13596-019-00359-z

  4. WHO Antimicrobial Resistance: Global Report on Surveillance. WHO, Geneva, Switzerland: 2014.

  5. Baym, M., Stone, L.K., and Kishony, R., Science, 2016, vol. 351, no. 6268, p. 3292. https://doi.org/10.1126/science.aad3292

  6. Cadez, T., Kolic, D., Sinko, G., and Kovarik, Z., Sci. Rep., 2021, vol. 11, no. 21486, p. 1. https://doi.org/10.1038/s41598-021-00953-9

  7. Carraminana, V., Retana, A.M.O., and Palacios, F., Molecules, 2021, vol. 26, no. 2, p. 426. https://doi.org/10.3390/molecules26020426

  8. Al Quntar, A.A.A., Dweik, H., and Dembitsky, V., Russ. J. Org. Chem., 2020, vol. 56, no. 1, p. 139. https://doi.org/10.1134/S1070428020010212

    Article  Google Scholar 

  9. Smolobochkin, A.V., Turmanov, R.A., Gazizov, A.S., Kuznetsova, E.A., Burilov, A.R., and Pudovik, M.A., Russ. J. Org. Chem., 2020, vol. 56, no. 6, p. 1119. https://doi.org/10.1134/s107042802006024

    Article  CAS  Google Scholar 

  10. Engel, R., Chem. Rev., 1977, vol. 77, no. 3, p. 349. https://doi.org/10.1021/cr60307a003

    Article  CAS  Google Scholar 

  11. Hiratake, J. and Oda, J., Biosci., Biotech. Biochem., 1997, vol. 61, no. 2, p. 211. https://doi.org/10.1271/bbb.61.211

  12. Moonen, K., Laureyn, I., and Stevens, C.V., Chem. Rev., 2004, vol.104, no. 12, p. 6177. https://doi.org/10.1021/cr030451c

  13. Palacios, F., Alonso, C., and De los Santos, J.M., Curr. Org. Chem., 2004, vol. 8, no. 15, p.1481. https://doi.org/10.2174/1385272043369863

    Article  CAS  Google Scholar 

  14. Schug, K.A. and Lindner, W., Chem. Rev., 2005, vol. 105, no. 1, p. 67. https://doi.org/10.1021/cr040603j

  15. Smolobochkin, A.V., Gazizov, A.S., Doszhanova, K.A., Kuandykova, A.B., Jiyembayev, B.Z., Burilov, A.R., and Cherkasov, R.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 6, p. 1100. https://doi.org/10.1134/s1070363220060274

    Article  CAS  Google Scholar 

  16. Baylis, E.K., Campbell, C.D., and Dingwall, J.G., J. Chem. Soc., Perkin Trans., 1984, vol. 1, p. 2845. https://doi.org/10.1039/P19840002845

  17. Sonar, S.S., Sadaphal, S.A., Labade, V.B., Shingate, B.B., and Shingare, M.S., Phosphor. Sulfur Silicon Rel. Elem., 2010, vol. 185, no. 1, p. 65. https://doi.org/10.1080/10426500802713259

  18. Kumar, B.S., Sankar, A.U.R., Suresh Reddy, C., Nayak, S.K., and Naga Raju, C., Arkivoc, 2007, vol. 3, no. 13, p. 155.

    Article  Google Scholar 

  19. Ouimette, D. and Coffey, M., Phytopathology, 1989, vol. 79, no. 1, p. 761. https://doi.org/10.1094/Phyto-79-761

  20. Yang, S., Gao, X.W., and Diao, C.L., Chin. J. Chem., 2006, vol. 24, no. 11, p. 1581. https://doi.org/10.1002/cjoc.200690296

  21. Xu, Y., Yan, K., Song, B., Xu, G., Song, Y., Wei, X., Deyu, H., Ping, L., Guiping, O., Linhong, J., and Zhuo, C., Molecules, 2006, vol. 11, no. 9, p. 666. https://doi.org/10.3390/11090666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bloemink, M.J., Diederen, J.J.H., Dorenbos, J.P., Heetebrij, R.J., Keppler, B.K., and Reedijk, J., Eur. J. Inorg. Chem., 1999, vol. 1999, no. 10, p. 1655. https://doi.org/10.1002/(SICI)1099-0682(199910)1999:10<1655::AID-EJIC1655>3.0.CO;2-5

  23. Jin, L., Song, B., Zhang, G., Xu, R., Zhang, S., Gao, X., Hu, D., and Yang, S., Bio. Med. Chem. Lett., 2006, vol. 16, p. 1537. https://doi.org/10.1016/j.bmcl.2006.07.048

  24. Rao, X., Song, Z., and He, L. Het. Chem., 2008, vol. 19, p. 512. https://doi.org/10.1002/hc.20471

  25. Disale, S.T., Kale, S.R., Kahandal, S.S., Srinivasan, T.G., and Jayaram, R.V., Tetrahedron Lett., 2012, vol. 53, no. 18, p. 2277. https://doi.org/10.1016/j.tetlet.2012.02.054

    Article  CAS  Google Scholar 

  26. Thirumurugan, P., Nandakumar, A., Priya, N.S., Muralidaran, D., and Perumal, P., Tetrahedron Lett., 2010, vol. 51, no. 43, p. 5708. https://doi.org/10.1016/j.tetlet.2010.08.066

    Article  CAS  Google Scholar 

  27. Reddy, P.S., Reddy, M.V.K., and Reddy, P.V.G., Chin. Chem. Lett., 2016, vol.27, no. 6, p. 943. https://doi.org/10.1016/j.cclet.2016.01.046

  28. Tillu, V., Dumbre, D., Wakharkar, R., and Choudhary, V., Tetrahedron Lett., 2011, vol. 52, no. 8, p. 863. https://doi.org/10.1016/j.tetlet.2010.11.105

    Article  CAS  Google Scholar 

  29. Taran, J., Ramazani, A., Aghahosseini, H., Gouranlou, F., Tarasi, R., Khoobi, M., and Joo, S.W., Phosphorus Sulfur Silicon Relat. Elem., 2017, vol. 192, no. 6, p. 776. https://doi.org/10.1080/10426507.2017.1290631

    Article  CAS  Google Scholar 

  30. Rezaei, Z., Firouzabadi, H., and Iranpoor, N., Eur. J. Med. Chem., 2009, vol. 44, no. 11, p. 4266. https://doi.org/10.1016/j.ejmech.2009.07.009

  31. Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Nadali, S., Mohtashami, N., and Mirzaei1, E.F., Int. J. Med. Chem., 2011, vol. 2011, no. 678101, p. 1, https://doi.org/10.1155/2011/678101

  32. Hosseini-Sarvari, M., Tetrahedron, 2008, vol. 64, no. 23, p. 5459. https://doi.org/10.1016/j.tet.2008.04.016

  33. Varga, P.R. and Keglevich, G.. Molecules, 2021, vol. 26, no. 9, p. 2511. https://doi.org/10.3390/molecules26092511

  34. Abhinav, K.V., Rao, R.V.K., Karthik, P.S., and Singh, S.P., RSC Adv., 2015, vol. 5, no. 79, p. 63985. https://doi.org/10.1039/C5RA08205F

  35. Hassani, H. and Jahani, Z., Russ. J. Org. Chem., 2020, vol. 56, no. 3, p. 485. https://doi.org/10.1134/s1070428020030185

    Article  CAS  Google Scholar 

  36. Siripala, W., Ivanovskaya, A., Jaramillo, T.F., Sung, H., and McFarland, E.W., Sol. Energy Mater. Sol. Cells, 2003, vol. 77, no. 3, p. 229. https://doi.org/10.1016/S0927-0248(02)00343-4

    Article  CAS  Google Scholar 

  37. Rao, C.N.R., Kulkarni, G.U., Thomas, P.J, and Edwards, P.P., Chem. Eur. J., 2002, vol. 8, no. 1, p. 28. https://doi.org/10.1002/1521-3765(20020104)8:1<28::AID-CHEM28>3.0.CO;2-B

  38. White, R.J., Luque, R., Budarin, V.L., Clark, J.H., and Macquarrie, D., J. Chem. Soc. Rev., 2009, vol. 38, no. 2, p. 481. https://doi.org/10.1039/B802654H

    Article  CAS  Google Scholar 

  39. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M., Nature, 2000, vol. 407, no. 1, p. 496. https://doi.org/10.1038/35035045

    Article  CAS  PubMed  Google Scholar 

  40. Alam, M.N., Bristi, N.J., and Rafiquzzaman, M., Saudi Pharm. J., 2013, vol. 21, no. 2, p. 143. https://doi.org/10.1016/j.jsps.2012.05.002

    Article  PubMed  Google Scholar 

  41. Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H., and Kim, S.K., Plant Sci., 2002, vol. 163, no. 6, p. 1161.

    Article  CAS  Google Scholar 

  42. Yen, G.C. and Chen, H.Y., J. Agri. Food Chem., 1995, vol. 43, no. 1, p. 27.

    Article  CAS  Google Scholar 

  43. Shirwaiker, A., Rajendran, K., and Dinesh kumar, C., Indian J. Exp. Biol., 2004, vol. 42, no. 8, p. 803.

    Google Scholar 

  44. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., J. Pharm. Anal., 2016, vol. 6, no. 2, p. 71. https://doi.org/10.1016/j.jpha.2015.11.005

Download references

Funding

This work was financially supported by DST, New Delhi, India, for providing financial support to Sarva Santhisudha through Woman Scientist Scheme-A (WOS-A) (F. nos.: SR/WOS-A/CS-104/2018, Dated: 14-09-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Reddy Cirandur.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarva, S., Gundluru, M. & Cirandur, S.R. Facile Synthesis, Antioxidant and Antimicrobial Activities of Diethyl((4-isopropylphenyl)(substituted phenylamino)methyl)phosphonates. Russ J Gen Chem 92, 2108–2118 (2022). https://doi.org/10.1134/S1070363222100243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100243

Keywords:

Navigation