Skip to main content
Log in

Palladium Complexes [Ph3PCH2CN]2[PdBr4], [Ph4P]2[PdBr4], [Ph3PC5H9-cyclo][PdBr3(Et2SO)], and [Ph4P]2[Pd2Br6]. Synthesis and Structure

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Palladium phosphonium complexes with mononuclear anions [Ph3PCH2CN][PdBr4], [Ph4P][PdBr4], and [Ph3PC5H9-cyclo][PdBr3(Et2SO)] were synthesized by the reaction of organyltriphenylphosphonium bromides with palladium(II) bromide in the presence of hydrobromic acid followed by recrystallization from acetonitrile, dimethyl sulfoxide, or diethyl sulfoxide. Holding the [Ph4P][PdBr4] complex in acetonitrile with the addition of diamyl sulfoxide led to the formation of the [Ph4P]2[Pd2Br6] complex. According to single crystal X-ray diffraction analysis, mononuclear [PdBr4]2–, [PdBr3(Et2SO)] and binuclear [Pd2Br6]2– anions in the complexes have a planar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Elschenbroich, Ch., Organometallchemie (Organometallic chemistry), Wiesbaden: В. G. Teubner Verlag, 2008, 6 ed.

  2. Gardiner, M.G., Ho, C.C., McGuinness, D.S., and Liu, Y.L., Austr. J. Chem., 2020, vol. 73, p. 1158. https://doi.org/10.1071/CH20194

    Article  CAS  Google Scholar 

  3. Gacal, E., Denizalti, S., Kinal, A., Gökçe, A.G., and Türkmen, H., Tetrahedron, 2018, vol. 74, no. 47, p. 6829. https://doi.org/10.1016/j.tet.2018.10.003

    Article  CAS  Google Scholar 

  4. Mansour, W., Fettouhi, M., and El Ali, B., ACS Omega, 2020, vol. 5, no. 50, p. 32515. https://doi.org/10.1021/acsomega.0c04706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mansour, W., Suleiman, R., Fettouhi, M., and El Ali, B., ACS Omega, 2020, vol. 5, no. 50, p. 23687. https://doi.org/10.1021/acsomega.0c02413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolfe, M.M.W., Shanahan, J.P., Kampf, J.W., and Szymczak, N.K., J. Am. Chem. Soc., 2020, vol. 142, no. 43, p. 18698. https://doi.org/10.1021/jacs.0c09505

    Article  CAS  Google Scholar 

  7. Mori, M., Sunatsuki, Y., and Suzuki, T., Inorg. Chem., 2020, vol. 59, no. 24, p. 18225. https://doi.org/10.1021/acs.inorgchem.0c02706

    Article  CAS  PubMed  Google Scholar 

  8. Behnia, A., Fard, M.A., Blacquiere, J.M., and Puddephatt, R.J., Organometallics, 2020, vol. 39, no. 22, p. 4037. https://doi.org/10.1021/acs.organomet.0c00615

    Article  CAS  Google Scholar 

  9. Materne, K., Braun-Cula, B., Herwig, C., Frank, N., and Limberg, C., Chem.-Eur. J., 2017, vol. 23, p. 11797. https://doi.org/10.1002/chem.201703489

    Article  CAS  PubMed  Google Scholar 

  10. Lin, T.-P., Ke, I.-Sh., and Gabbaï, F.P., Angew. Chem. Int. Ed., 2012, vol. 51, p. 4985. https://doi.org/10.1002/anie.201200854

    Article  CAS  Google Scholar 

  11. Cambridge Crystallographic Data Center, 2020. http://www.ccdc.cam.ac.uk

  12. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Il’chenko, B.A., and Andreev, P.V., Russ. J. Cen. Chem., 2017, vol. 87, no. 1, p. 122. https://doi.org/10.1134/S1070363217010194

    Article  CAS  Google Scholar 

  13. Sharutin, V.V., Senchurin, V.S., and Sharutina, O.K., Russ. J. Inorg. Chem., 2013, vol. 58, no. 5, p. 543. https://doi.org/10.1134/S0036023613050203

    Article  CAS  Google Scholar 

  14. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Il’chenko, B.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 462. https://doi.org/10.1134/S1070328415070088

    Article  CAS  Google Scholar 

  15. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Il’chenko, I.A., Bull. South Ural State Univ. Ser. Chem., 2015, vol. 7, no. 2, p. 11.

    Google Scholar 

  16. Yarygina, D.M., Batalov, A.E., and Senchurin, V.S., Vestn. YUUrGU, Ser. Khimiya, 2018, vol. 10, no. 3, p. 51. https://doi.org/10.14529/chem180306

    Article  Google Scholar 

  17. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Andreev, P.V., Russ. J. Inorg. Chem., 2018, vol. 63, no. 6, p. 747. https://doi.org/10.1134/S0036023618060220

    Article  CAS  Google Scholar 

  18. Dmitriev, M.V., Slepukhin, P.A., Glushkov, V.A., Eroshenko, D.V., Shavkunov, S.P., and Denisov, M.S., Russ. J. Inorg. Chem., 2019, vol. 64, no. 1, p. 56. https://doi.org/10.1134/S0036023619010054

    Article  Google Scholar 

  19. Gupta, A., Deka, R., Butcher, R.J., and Singh, H.B., Acta Crystallogr. E, 2020, vol. 76, p. 1520. https://doi.org/10.1107/S2056989020011482

    Article  CAS  Google Scholar 

  20. Hazell, A., McKenzie, C.J., and Nielsen, L.P., J. Chem. Soc. Dalton Trans., 1998, no. 11, p. 1751. https://doi.org/10.1039/a800602d

    Article  Google Scholar 

  21. Geary, W.J., Mason, N.J., Nixon, L.A., and Nowell, I.W., Chem. Commun., 1980, no. 22, p. 1064. https://doi.org/10.1039/c39800001064

    Article  Google Scholar 

  22. Schroeter, F., Soellner, J., and Strassner, T., Chem. Eur. J., 2019, vol. 25, p. 2527. https://doi.org/10.1002/chem.201804431

    Article  CAS  PubMed  Google Scholar 

  23. Lang, C., Pahnke, K., Kiefer, C., Goldmann, A.S., Roesky, P.W., and Barner-Kowollik, C., Polym. Chem., 2013, vol. 4, no. 21, p. 5456. https://doi.org/10.1039/C3PY00648D

    Article  CAS  Google Scholar 

  24. Pretsch, E., Büllmann, P., and Affotler, C., Structure Determination of Organic Compounds: Tables of Spectral Data, Berlin: Springer, 2000, 3 ed.

  25. Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragána, F., and Alvarez, S., Dalton Trans., 2008, vol. 21, p. 2832. https://doi.org/10.1039/B801115J

    Article  Google Scholar 

  26. Mantina, M., Chamberlin, A.C., Valero, R., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. A, 2009, vol. 113, no. 19, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison, Bruker AXS Inc., 1998.

  28. SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, 1998.

  29. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K. & Senchurin, V.S. Palladium Complexes [Ph3PCH2CN]2[PdBr4], [Ph4P]2[PdBr4], [Ph3PC5H9-cyclo][PdBr3(Et2SO)], and [Ph4P]2[Pd2Br6]. Synthesis and Structure. Russ J Gen Chem 92, 1309–1316 (2022). https://doi.org/10.1134/S1070363222070209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222070209

Keywords:

Navigation