Skip to main content
Log in

Self-Organization of Di- and Triglycine Oligopeptides in Thin Films on the Hydrophilic and Hydrophobic Silicon Surface under Exposure to Organic Compounds Vapors

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The influence of the substrate hydrophobicity degree and of the number of amino acid residues in the oligopeptide molecule on the self-assembly of glycyl-glycine and glycyl-glycyl-glycine under exposure to vapors of organic compounds was studied. The effect of strong and weak proton donor and proton acceptor vapors on the morphology of the thin films of the glycine-based oligopeptides was examined by atomic force microscopy. The possibility of controlling the self-assembly of oligopeptides by fine-tuning the substrate type and vapor of the organic compounds used for thin film saturation was demonstrated. A technique for surface state monitoring of the oligopeptide thin film by using atomic force spectroscopy was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kim, S., Kim, J.H., Lee, J.S., and Park, C.B., Small, 2015, vol. 11, p. 3623. https://doi.org/10.1002/smll.201500169

    Article  CAS  PubMed  Google Scholar 

  2. Wang, T., Zhang, Y.-R., Liu, X.-H., Ge, S., and Zhu, Y.-S., Biomolecules, 2019, vol. 9, p. 733. https://doi.org/10.3390/biom9110733

    Article  CAS  PubMed Central  Google Scholar 

  3. Zelzer, M. and Ulijn, R.V., Chem. Soc. Rev., 2010, vol. 39, p. 3351. https://doi.org/10.1039/C0CS00035C

    Article  CAS  PubMed  Google Scholar 

  4. Marchesan, S., Vargiu, A.V., and Styan, K.E., Molecules, 2015, vol. 20, p. 19775. https://doi.org/10.3390/molecules201119658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheehan, F., Sementa, D., Jain, A., Kumar, M., TayaraniNajjaran, M., Kroiss, D., and Ulijn, R.V., Chem. Rev., 2021, vol. 121, p. 13869. https://doi.org/10.1021/acs.chemrev.1c00089

    Article  CAS  PubMed  Google Scholar 

  6. Slabov, V., Kopyl, S., Soares dos Santos, M.P., and Kholkin, A., in Nanogenerators, Kim, S.-J., Chandrasekhar, A., and Alluri, N.R., Eds., London: InTech, 2020, p. 1.

  7. Vandermeulen, G.W.M. and Klok, H.-A., Macromol. Biosci., 2004, vol. 4, p. 383. https://doi.org/10.1002/mabi.200300079

    Article  CAS  PubMed  Google Scholar 

  8. Ziganshin, M.A., Ziganshina, S.A., Gubina, N.S., Gerasimov, A.V., Gorbatchuk, V.V., and Bukharaev, A.A., Orient. J. Chem., 2015, vol. 31, p. 1977. https://doi.org/10.13005/ojc/310415

    Article  CAS  Google Scholar 

  9. Mata, A., Geng, Y., Henrikson, K.J., Aparicio, C., Stock, S.R., Satcher, R.L., and Stupp, S.I., Biomaterials, 2010, vol. 31, p. 6004. https://doi.org/10.1016/j.biomaterials.2010.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomono, T., Yagi, H., Kanemoto, S., Ukawa, M., Miyata, K., Shigeno, K., and Sakuma, S., Int J. Pharm., 2022, vol. 616, Art. 121519. https://doi.org/10.1016/j.ijpharm.2022.121519

  11. Yang, Y., Ulung, K., Wang, X., Horii, A., Yokoi, H., and Zhang, Sh., Nano Today, 2009, vol. 4, p. 193. https://doi.org/10.1016/j.nantod.2009.02.009

    Article  CAS  Google Scholar 

  12. Adler-Abramovich, L., Kol, N., Yanai, I., Barlam, D., Shneck, R.Z., and Gazit, E., Angew. Chem., Int. Ed., 2010, vol. 49, p. 9939. https://doi.org/10.1002/anie.201002037

    Article  CAS  Google Scholar 

  13. Tamamis, P., Adler-Abramovich, L., Reches, M., Marshall, K., Sikorski, P., Serpell, L., Gazit, E., and Archontis, G., Biophys. J., 2009, vol. 96, p. 5020. https://doi.org/10.1016/j.bpj.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dutta, A., Dutt, A., Drew, M.G.B., and Pramanik, A., Supramol. Chem., 2008, vol. 20, p. 625. https://doi.org/10.1080/10610270701565194

    Article  CAS  Google Scholar 

  15. Li, H., Zhang, F., Zhang, Y., Hel, J., and Hu, J., Acta Bioch. Biophys. Sin., 2007, vol. 39, p. 285. https://doi.org/10.1111/j.1745-7270.2007.00278.x

    Article  CAS  Google Scholar 

  16. Tao, K., Makam, P., Aizen, R., and Gazit, E., Science, 2017, vol. 358, p. 1. https://doi.org/10.1126/science.aam9756

    Article  CAS  Google Scholar 

  17. Zasadzinski, J., Viswanathan, R., Madsen, L., Garnaes, J., and Schwartz, D., Science, 1994, vol. 263, p.1726. https://doi.org/10.1126/science.8134836

    Article  CAS  PubMed  Google Scholar 

  18. Yuran, S., Razvag, Y., and Reches, M., ACS Nano, 2012, vol. 6, p. 9559. https://doi.org/10.1021/nn302983e

    Article  CAS  PubMed  Google Scholar 

  19. Joshi, K.B. and Verma, S., J. Pept. Sci., 2008, vol. 14, p. 118. https://doi.org/10.1002/psc.955

    Article  CAS  PubMed  Google Scholar 

  20. Yan, X., Cui, Y., He, Q., Wang, K., and Li, J., Chem. Mater., 2008, vol. 20, p. 1522. https://doi.org/10.1021/cm702931b

    Article  CAS  Google Scholar 

  21. Ryu, J. and Park, Ch.B., Adv. Mater., 2008, vol. 20, p. 3754. https://doi.org/10.1002/adma.200800364

    Article  CAS  Google Scholar 

  22. Ziganshin, M.A., Efimova, I.G., Bikmukhametova, A.A., Gorbachuk, V.V., Ziganshina, S.A., Chuklanov, A.P., and Bukharaev, A.A., Fizikokhim. Poverkhn. Zashch. Mater., 2013, vol. 49, p. 1. https://doi.org/10.7868/S0044185614010173

    Article  Google Scholar 

  23. Ziganshin, M., Gubina, N.S., Gerasimov, A.V., Gorbatchuk, V.V., Ziganshina, S.A., Chuklanov, A.P., and Bukharaev, A.A., Phys. Chem. Chem. Phys., 2015, vol. 7, p. 20168. https://doi.org/10.1039/C5CP03309H

    Article  CAS  Google Scholar 

  24. Reches, M. and Gazit, E., Nano Lett., 2004, vol. 4, p. 581. https://doi.org/10.1021/nl035159z

    Article  CAS  Google Scholar 

  25. Gazit, E., Chem. Soc. Rev., 2007, vol. 36, p. 1263. https://doi.org/10.1039/b605536m

    Article  CAS  PubMed  Google Scholar 

  26. Görbitz, C.H., Chem. Eur. J., 2001, vol. 7, p. 5153. https://doi.org/10.1002/1521-3765(20011203)7:23<5153:aid-chem5153>3.0.co;2-n

    Article  PubMed  Google Scholar 

  27. Rissanou, A.N., Georgilis, E., Kasotakis, E., Mitraki, A., and Harmandaris, V., J. Phys. Chem., B, 2013, vol. 117, p. 3962. https://doi.org/10.1021/jp311795b

    Article  CAS  Google Scholar 

  28. Acuña, S.M., Veloso, M.C., and Toledo, P.G., J. Nanomater., 2018, vol. 2018, p. 1. https://doi.org/10.1155/2018/8140954

    Article  CAS  Google Scholar 

  29. Huang, R., Qi, W., Su, R., Zhao, J., and He, Z., Soft Matter., 2011, vol. 7, p. 6418. https://doi.org/10.1039/c1sm05752a

    Article  CAS  Google Scholar 

  30. Evans, P.G. and Spalenka, J.W., in Handbook of Crystal Growth, Nishinaga, T. and Kuech, T.F., Eds., 2015, Amsterdam: Elsevier, p. 509.

  31. Lee, J.S., Ryu, J., and Park, C.B., Soft Matter., 2009, vol. 5, p. 2717. https://doi.org/10.1039/b906783c

    Article  CAS  Google Scholar 

  32. Ziganshin, M.A., Morozova, A.S., Ziganshina, S.A., Vorobev, V.V., Suwińska, K., Bukharaev, A.A., and Gorbatchuk, V.V., Mol. Cryst. Liq. Cryst., 2019, vol. 690, p. 67. https://doi.org/10.1080/15421406.2019.1683311

    Article  CAS  Google Scholar 

  33. Morozova, A.S., Ziganshina, S.A., Bukharaev, A.A., Ziganshin, M.A., and Gerasimov, A.V., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2020, vol. 14, p. 499. https://doi.org/10.1134/S102745102003009X

    Article  CAS  Google Scholar 

  34. Romanyuk, K., Slabov, V., Alikin, D., Zelenovskiy, P., Correia, M.R.P., Keller, K., Ferreira, R.A.S., Vasilev, S., Kopyl, S., and Kholkin, A., Appl. Mater. Today, 2022, vol. 26, Art. 101261. https://doi.org/10.1016/j.apmt.2021.101261

  35. Brooks, J.S., Chem. Soc. Rev., 2010, vol. 39, p. 2667. https://doi.org/10.1039/B913417B

    Article  CAS  PubMed  Google Scholar 

  36. Sidney, P.S. and Marchant, R.E., Surf. Sci., 2001, vol. 491, p. 421. https://doi.org/10.1016/S0039-6028(01)01308-5

    Article  Google Scholar 

  37. Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Fundamentals of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2009.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 20-32-90101; sample preparation, AFM, and AFS measurements and data processing, A.S. Morozov) within the framework of State Assignment for the Federal Research Center “Kazan Scientific Center” of Russian Academy of Sciences (S.A. Ziganshina, A.A. Bukharaev), as well as within the framework of the Kazan (Volga Region) Federal University Strategic Academic Leadership Program (M.A. Ziganshin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Morozova.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

In Memory of V.I. Galkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, A.S., Ziganshina, S.A., Ziganshin, M.A. et al. Self-Organization of Di- and Triglycine Oligopeptides in Thin Films on the Hydrophilic and Hydrophobic Silicon Surface under Exposure to Organic Compounds Vapors. Russ J Gen Chem 92, 1271–1279 (2022). https://doi.org/10.1134/S1070363222070155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222070155

Keywords:

Navigation