Skip to main content
Log in

Mechanically Activated Solid-State Synthesis of Nanocrystalline Yb4Zr3O12

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline ytterbium zirconate Yb4Zr3O12 (δ-phase) was synthesized by the solid-state method with preliminary mechanical activation of a stoichiometric mixture of the corresponding oxides. The processes occurring in the course of the synthesis were studied by X-ray powder diffraction, IR spectroscopy, and thermal analysis. The average size of Yb4Zr3O12 crystallites obtained by annealing a mechanically activated oxide mixture at 900, 1000, 1100, and 1200°C was calculated by the Scherrer formula and was 12, 17, 27, and 41 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhao, Z.-T., Guo, R.-F., Mao, H.-R., and Shen, P., J. Eur. Ceram. Soc., 2021, vol. 41, p. 5768. https://doi.org/10.1016/j.jeurceramsoc.2021.04.053

    Article  CAS  Google Scholar 

  2. Lyskov, N.V., Shchegolikhin, A.N., Stolbov, D.N., Kolbanev, I.V., Gomes, E., Abrantes, J.C.C., and Shlyakhtina, A.V., Electrochim. Acta, 2022, vol. 403, article no. 139632. https://doi.org/10.1016/j.electacta.2021.139632

  3. Wang L., Li J., Xie H., Chen Q., Xie Y., Chen Q., Xie Y., Prog. Nucl. Energy, 2021, vol. 137, article ID 103774. https://doi.org/10.1016/j.pnucene.2021.103774

  4. Zhong, F., Shi, L., Zhao, J., Cai, G., Zheng, Y., Xiao, Y., and Long, J., Ceram. Int., 2017, vol. 43, no. 15, p. 11799. https://doi.org/10.1016/j.ceramint.2017.06.019

    Article  CAS  Google Scholar 

  5. Zinatloo-Ajabshir, S., Salavati-Niasari, M., Sobhari, A., and Zinatloo-Ajabshir, Z., J. Alloys Compd., 2018, vol. 767, p. 1164. https://doi.org/10.1016/j.jallcom.2018.07.198

    Article  CAS  Google Scholar 

  6. Kumar, A., Singh, D.K., and Manam, J., J. Mater. Sci.: Mater. Electron., 2019, vol. 30, p. 2360. https://doi.org/10.1007/s10854-018-0509-8

    Article  CAS  Google Scholar 

  7. Gonzalez, M., Moure, C., Jurado, J.R., and Duran, P., J. Mater. Sci., 1993, vol. 28, p. 3451. https://doi.org/10.1007/BF01159821

    Article  CAS  Google Scholar 

  8. Kornienko, O.A., Andrievskaya, E.R., Bykov, A.I., and Bogatyreva, Zh.D., Vіsn. Odes. Nats. Unіv.: Khіm., 2018, vol. 23, no. 1 (65), p. 83. https://doi.org/10.18524/2304-0947.2018.1(65).124549

    Article  CAS  Google Scholar 

  9. Fabrichnaya, O., Lakiza, S.M., Kriegel, M.J., Seidel, J., Savinykh, G., and Schreiber, G., J. Eur. Ceram. Soc., 2015, vol. 35, no. 10, p. 2855. https://doi.org/10.1016/j.jeurceramsoc.2015.03.037

    Article  CAS  Google Scholar 

  10. Fabrichnaya, O. and Seifert, H.J., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2010, vol. 34, no. 2, p. 206. https://doi.org/10.1016/j.calphad.2010.03.001

    Article  CAS  Google Scholar 

  11. Stolyarova, V.L., Lopatin, S.I., Fabrichnaya, O.B., and Shugurov, S.M., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 1, p. 109. https://doi.org/10.1002/rcm.6764

    Article  CAS  PubMed  Google Scholar 

  12. Simoncic, P. and Navrotsky, A., J. Am. Ceram. Soc., 2007, vol. 90, no. 7, p. 2143. https://doi.org/10.1111/j.1551-2916.2007.01678.x

    Article  CAS  Google Scholar 

  13. Thornber, M.R. and Bevan, D.J.M., J. Solid State Chem., 1970, vol. 1, nos. 1–4, p. 536. https://doi.org/10.1016/0022-4596(70)90139-8

    Article  Google Scholar 

  14. Stecura, S., Thin Solid Films, 1987, vol. 150, no. 1, p. 15. https://doi.org/10.1016/0040-6090(87)90305-1

    Article  CAS  Google Scholar 

  15. Chou, Y.H., Hondow, N., Thomas, C.I., Mitchell, R., Brydson, R., and Douthwaite, R.E., Dalton Trans., 2012, vol. 41, no. 8, p. 2472. https://doi.org/10.1039/C2DT12269C

    Article  CAS  PubMed  Google Scholar 

  16. Karaulov, A.G. and Zoz, E.I., Refract. Ind. Ceram., 1999, vol. 40, p. 479. https://doi.org/10.1007/BF02762623

    Article  CAS  Google Scholar 

  17. Gonzalez, M., Moure, C., Jurado, J.R., and Duran, P., J. Mater. Sci., 1993, vol. 28, p. 3451. https://doi.org/10.1007/BF0115

    Article  CAS  Google Scholar 

  18. Rossell, H.J., J. Solid State Chem., 1976, vol. 19, no. 2, p. 103. https://doi.org/10.1016/0022-4596(76)90156-0

    Article  CAS  Google Scholar 

  19. Rejith, R., Krishnan, R.R., John, A., Thomas, J.K., and Solomon, S., Ionics, 2019, vol. 25, p. 5091. https://doi.org/10.1007/s11581-019-03097-z

    Article  CAS  Google Scholar 

  20. Kong, S.L., Karatchevtseva, I., Gregg, D.J., Blackford, M.G., Holmes, R., and Triani, G., J. Eur. Ceram. Soc., 2013, vol. 33, p. 3273. https://doi.org/10.1016/j.jeurceramsoc.2013.05.011

    Article  CAS  Google Scholar 

  21. Kaliyaperumal, C., Sankarakumar, A., and Paramasivam, T., J. Alloys Compd., 2020, vol. 813, article ID 152221. https://doi.org/10.1016/j.jallcom.2019.152221

  22. Heinicke, G., Tribochemistry, Berlin: Akademie, 1984.

  23. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamentals of Mechanical Activation, Mechanosynthesis, and Mechanochemical Technologies), Avvakumov, E.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.

  24. Lapshin, O.V., Boldyreva, E.V., and Boldyrev, V.V., Russ. J. Inorg. Chem., 2021, vol. 66, p. 433. https://doi.org/10.1134/S0036023621030116

    Article  CAS  Google Scholar 

  25. Salazar-Zertuche, M., Diaz-Guillen, J.A., AcostaGarcía, J.O., Diaz-Guillen, J.C., Montemayor, S.M., Burciaga-Diaz, O., Bazaldua-Medellin, M.E., and Fuentes, A.F., Int. J. Hydrogen Energy, 2019, vol. 44, no. 9, p. 12500. https://doi.org/10.1016/j.ijhydene.2018.11.141

    Article  CAS  Google Scholar 

  26. Kaminskii, Yu.D., Mekhanokhimicheskie reaktory planetarnogo tipa. Teoriya i praktika (Planetary Mechanochemical Reactors. Theory and Practice), Novosibirsk: Nauka, 2015.

  27. Kalinkin, A.M., Usoltsev, A.V., Kalinkina, E.V., Nevedomskii, V.N., and Zalkind, O.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2258. https://doi.org/10.1134/S1070363217100024

    Article  CAS  Google Scholar 

  28. Kalinkin, A.M., Vinogradov, V.Yu., and Kalinkina, E.V., Inorg. Mater., 2021, vol. 57, no. 2, p. 178. https://doi.org/10.1134/S0020168521020072

    Article  CAS  Google Scholar 

  29. Dorofeev, G.A., Streletskii, A.N., Povstugar, I.V., Protasov, A.V., and Elsukov, E.P., Colloid J., 2012, vol. 74, no. 6, p. 678. https://doi.org/10.1134/S1061933X12060051

    Article  CAS  Google Scholar 

  30. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods of Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kalinkin.

Ethics declarations

A.M. Kalinkin is a member of the Editorial Board of the Zhurnal Obshchei Khimii. The other authors declare the absence of conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkin, A.M., Kuz’menkov, O.A., Kalinkina, E.V. et al. Mechanically Activated Solid-State Synthesis of Nanocrystalline Yb4Zr3O12. Russ J Gen Chem 92, 1056–1061 (2022). https://doi.org/10.1134/S1070363222060172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222060172

Keywords:

Navigation