Skip to main content
Log in

Synthesis and Cytotoxic Activity of 1,3,5-Triazinane Derivatives Based on Primary Amines and Amino Acids Esters

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of 1,3,5-triazinane derivatives was synthesized and their cytotoxic activity was studied in vitro on normal cell line (HEK293) and tumor cell lines (SH-SY5Y, MCF-7, A549). It was shown that the studied compounds have moderate cytotoxic activity against normal and tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme

Similar content being viewed by others

REFERENCES

  1. Liu, B., Sun, T., Zhou, Z., and Du, L., Med. Chem., 2015, vol. 5, no. 3, p. 131. https://doi.org/10.4172/2161-0444.1000255

    Article  CAS  Google Scholar 

  2. Song, M.B., Sung, Y.K., and Ju, H.S., Bull. Korean Chem. Soc., 2021, vol. 42, no. 6, p. 840. https://doi.org/10.1002/bkcs.12266

    Article  CAS  Google Scholar 

  3. Al-Khamees, H.A., Arch. Pharm. Res., 1990, vol. 13, no. 1, p. 19. https://doi.org/10.1007/BF02857828

    Article  CAS  Google Scholar 

  4. Qin, Y., Zhang, J., Song, D., Duan, H., Li, W., and Yang, X., Molecules, 2016, vol. 21, no. 7, p. 825. https://doi.org/10.3390/molecules21070825

    Article  CAS  PubMed Central  Google Scholar 

  5. Adamia, G., Ghoghoberidze, M., Graves, D., and Khatisashvili, G., Ecotoxicol. Environ. Saf., 2006, vol. 64, no. 2, p. 136. https://doi.org/10.1016/j.ecoenv.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  6. Murinov, Yu.I., Golubyatnikova, L.G., Khisamutdinov, R.A., Badamshin, A.G., and Dokichev, V.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 11, p. 2048. https://doi.org/10.1134/S1070363220110055

    Article  CAS  Google Scholar 

  7. Wylde, J.J., Taylor, G.N., Sorbie, K.S., and Samaniego, W.N., Energy & Fuels, 2020, vol. 34, no. 11, p. 13883. https://doi.org/10.1021/acs.energyfuels.0c02652

    Article  CAS  Google Scholar 

  8. Ishmiyarov, E.R., Rakhimova, N.T., Latypova, D.R., Abdullin, M.I., Voloshin, A.I., and Dokichev, V.A., Russ. J. Appl. Chem., 2015, vol. 88, p. 1174. https://doi.org/10.1134/S1070427215070113

    Article  CAS  Google Scholar 

  9. Salman, M., Ansari, K.R., Haque, J., Srivastava, V., Quraishi, M.A., and Mazumder, M., J. Heterocycl. Chem., 2020, vol. 57, p. 2157. https://doi.org/10.1002/jhet.3936

    Article  CAS  Google Scholar 

  10. Cascioferro, S., Parrino, B., Spanò, V., Carbone, A., Montalbano, A., Barraja, P., Diana, P., and Cirrincione, G., Eur. J. Med. Chem., 2017, vol. 142, p. 523. https://doi.org/10.1016/j.ejmech.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  11. Al Rasheed, H.H., Malebari, A.M., Dahlous, K.A., Fayne, D., and El-Faham, A., Molecules, 2020, vol. 25, p. 4065. https://doi.org/10.3390/molecules25184065

    Article  CAS  PubMed Central  Google Scholar 

  12. Latypova, D.R., Badamshin, A.G., Gibadullina, N.N., Khusnutdinova, N.S., Zainullina, L.F., Vakhitova, Y.V., Tomilov, Y.V., and Dokichev, V.A., Med. Chem. Res., 2017, vol. 26, p. 900. https://doi.org/10.1007/s00044-017-1802-4

    Article  CAS  Google Scholar 

  13. Fatima, A.I. Al-Khodir, Hana, Abumelha, M.A., Tarfah Al-Warhi, and Al-Issa, S.A., Biomed. Res. Int., 2019. Article ID 9835745. https://doi.org/10.1155/2019/9835745

  14. Srivastava, J.K., Pillai, G.G., Bhat, H.R., Verma, A., and Singh, U.P., Sci. Rep., 2017, vol. 7, p. 5851. https://doi.org/10.1038/s41598-017-05934-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhat, H.R., Masih, A., Shakya, A., Ghosh, S.K., and Singh, U.P., J. Heterocycl. Chem., 2019, vol. 57, no. 12, p. 390. https://doi.org/10.1002/jhet.3791

    Article  CAS  Google Scholar 

  16. Ulrich, H. and Rubinfeld, J., J. Org. Chem., 1961, vol. 26, no. 5, p. 1637. https://doi.org/10.1021/jo01064a606

    Article  CAS  Google Scholar 

  17. Barluenga, J., Bayon, A.M., Campos, P., Asensio, G., Gonzalez-Nunez, E., and Molina, Y., J. Chem. Soc. Perkin Trans. 1, 1988, p. 1631. https://doi.org/10.1039/P19880001631

  18. Kauffman, W.J., J. Heterocycl. Chem., 1975, vol. 12, no. 2, p. 409. https://doi.org/10.1002/jhet.5570120244

    Article  CAS  Google Scholar 

  19. Tsuge, O., Kanemasa, S., Ohe, M., and Takenaka, S., Bull. Chem. Soc. Japan, 1987, vol. 60, p. 4079. https://doi.org/10.1246/bcsj.60.4079

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectral studies (NMR spectra and mass spectra) were performed using the equipment of the Center for Collective Use “Chemistry” of the Ufa Institute of Chemistry of the Ufa Federal Research Center of the Russian Academy of Sciences.

Funding

This work was carried out as part of the research work of the Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences (registration no. AAAA-A20-120012090031-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Kireeva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kireeva, D.R., Sadretdinov, S.S., Musina, A.I. et al. Synthesis and Cytotoxic Activity of 1,3,5-Triazinane Derivatives Based on Primary Amines and Amino Acids Esters. Russ J Gen Chem 92, 24–28 (2022). https://doi.org/10.1134/S1070363222010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222010054

Keywords:

Navigation