Skip to main content
Log in

Synthesis and Structure of (4Fluorobenzyl)triphenylphosphonium Dicyanodihaloaurates [Ph3PCH2C6H4F-4][Au(CN)2Hlg2]

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

(4-Fluorobenzyl)triphenylphosphonium dicyanodihaloaurates [Ph3PCH2C6H4F-4][Au(CN)2Hlg2], Hlg = Cl, Br, and I, were synthesized from (4-fluorobenzyl)triphenylphosphonium chloride and potassium dicyanodihaloaurate in an aqueous medium. Structure of the compounds was characterized by IR, 1H, 13C{1H}, and 19F{1H} NMR spectroscopy, elemental analysis, and X-ray structural analysis. The crystals of the synthesized complexes contain tetrahedral (4fluorobenzyl)triphenylphosphonium cations and square centrosymmetric [Au(CN)2Hlg2]– anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Xiaobo, L. and Patterson, H., Materials, 2013, vol. 6, p. 2595. https://doi.org/10.3390/ma6072595

    Article  CAS  Google Scholar 

  2. Dechambenoit, P., Ferlay, S., Kyritsakas, N., and Hosseini, M.W., Cryst. Eng. Commun., 2011, vol. 13, p., 1922. https://doi.org/10.1039/C0CE00607F

  3. Hill, J.A., Thompson, A.L., and Goodwin, A.L., J. Am. Chem. Soc., 2018, vol. 138, p. 5886. https://doi.org/10.1021/jacs.5b13446

    Article  CAS  Google Scholar 

  4. Assefaa, Z., Haireb, R.G., and Sykorac, R.E., J. Solid State Chem., 2008, vol. 181, p. 382. https://doi.org/10.1016/j.jssc.2007.11.036

    Article  CAS  Google Scholar 

  5. Brown, M.L., Ovens, J.S., and Leznoff, D.B., Dalton Trans., 2017, vol. 46, p. 7169. https://doi.org/10.1039/C7DT00942A

    Article  CAS  PubMed  Google Scholar 

  6. Chorazy, S., Wyczesany, M., and Sieklucka, B., Molecules, 2017, vol. 22, p. 1902. https://doi.org/10.3390/molecules22111902

    Article  CAS  PubMed Central  Google Scholar 

  7. Shaw, C.F., Chem. Rev., 1999, vol. 99, no. 9, p. 2589. https://doi.org/10.1021/cr980431o

    Article  CAS  Google Scholar 

  8. Rawashdeh-Omary, M.A., Omary, M.A., and Patterson, H.H., J. Am. Chem. Soc., 2000, vol. 122, no. 42, p. 10371. https://doi.org/10.1021/ja001545w

    Article  CAS  Google Scholar 

  9. Rawashdeh-Omary, M.A., Omary, M.A., Shankle, G.E., and Patterson, H.H., J. Phys. Chem. B, 2000, vol. 104, no. 26, p. 6143. https://doi.org/10.1021/jp000563x

    Article  CAS  Google Scholar 

  10. Colis, J.C.F., Larochelle, C., Ferna´ndez, E.J., López-deLuzuriaga, J.M., Monge, M., Laguna, A., Tripp, C., and Patterson, H., J. Phys. Chem. B, 2005, vol. 109, no. 10, p. 4317. https://doi.org/10.1021/jp045868g

    Article  CAS  PubMed  Google Scholar 

  11. Assefaa, Z., Kalachnikova, K., Hairec, R.G., and Sykora, R.E., J. Solid State Chem., 2007, vol. 180, p. 3121. https://doi.org/10.1016/j.jssc.2007.08.032

    Article  CAS  Google Scholar 

  12. Roberts, R.J., Le, D., and Leznoff, D.B., Inorg. Chem., 2017, vol. 56, no. 14, p. 7948. https://doi.org/10.1021/acs.inorgchem.7b00735

    Article  CAS  PubMed  Google Scholar 

  13. Ovens, J.S. and Leznoff, D.B., Dalton Trans., 2011, vol. 40, p. 4140. https://doi.org/10.1039/c0dt01772h

    Article  CAS  PubMed  Google Scholar 

  14. Ovens, J.S., Truong, K.N., and Leznof, D.B., Dalton Trans., 2012, vol. 41, p. 1345. https://doi.org/10.1039/c1dt11741f

    Article  CAS  PubMed  Google Scholar 

  15. Ovens, J.S. and Leznoff, D.B., Chem. Mater., 2015, vol. 27, no. 5, p. 1465. https://doi.org/10.1021/cm502998w

    Article  CAS  Google Scholar 

  16. Sharutin, V.V., Sharutina, O.K., and Popkova, M.A., Russ. J. Inorg. Chem., 2019, vol. 64. 6, p. 729. https://doi.org/10.1134/S0036023619060147

    Article  CAS  Google Scholar 

  17. Sharutin, V.V., Popkova, M.A., and Tarasova, N.M., Bull. South Ural State University, Ser. Chem., 2018, vol. 10, no. 1, p. 55. https://doi.org/10.14529/chem180107

    Article  Google Scholar 

  18. Ovens, J.S., Geisheimer, A.R., Bokov, A.A., Ye, Z.-G., and Leznoff, D.B., Inorg. Chem., 2010, vol. 49, p. 9609. https://doi.org/10.1021/ic101357y

    Article  CAS  PubMed  Google Scholar 

  19. Pitteri, B., Bortoluzzi, M., and Bertolasi, V., Transition Met. Chem., 2008, vol. 33, p. 649. https://doi.org/10.1007/s11243-008-9092-9

    Article  CAS  Google Scholar 

  20. Marangoni, G., Pitteri, B., Bertolasi, V., Ferretti, V., and Gilli, G., J. Chem. Soc. Dalton Trans., 1987, no. 1, p. 2235. https://doi.org/10.1039/DT9870002235

    Article  Google Scholar 

  21. Ovens, J.S., Truong, K.N., and Leznoff, D.B., Inorg. Chim. Acta, 2013, vol. 403, p. 127. https://doi.org/10.1016/j.ica.2013.02.011

    Article  CAS  Google Scholar 

  22. Senchurin, V.S., Bull. South Ural State University, Ser. Chem., 2019, vol. 11, no. 3, p. 50. https://doi.org/10.14529/chem190306

    Article  Google Scholar 

  23. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., and Efremov, A.N., Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, p. 169. https://doi.org/10.1134/S0036023620020151

    Article  CAS  Google Scholar 

  24. Pretsch, D. P., Bühlmann, P., and Affolter; C., Structure Determination of Organic Compounds, Berlin: Springer Verlag, 2000.

  25. Jones, L., Inorg. Chem., 1964, vol. 3, no. 11, p. 1581. https://doi.org/10.1021/ic50021a024

    Article  CAS  Google Scholar 

  26. Shorrock, C.J., Jong, H., Batchelor, R.J., and Leznoff, D.B., Inorg. Chem., 2003, vol. 42, p. 3917. https://doi.org/10.1021/ic034144

    Article  CAS  PubMed  Google Scholar 

  27. Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragan, F., and Alvarez, S., Dalton Trans., 2008, p. 2832. https://doi.org/10.1039/b801115j

  28. Mantina, M., Chamberlin, A.C., Valero, R., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. A, 2009, vol. 113, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

  30. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 11, pp. 1716–1722 https://doi.org/10.31857/S0044460X21110081.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K., Tarasova, N.M. et al. Synthesis and Structure of (4Fluorobenzyl)triphenylphosphonium Dicyanodihaloaurates [Ph3PCH2C6H4F-4][Au(CN)2Hlg2]. Russ J Gen Chem 91, 2187–2193 (2021). https://doi.org/10.1134/S1070363221110086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221110086

Keywords:

Navigation