Skip to main content
Log in

Electrochemical Synthesis and Characterization of Copper(II) and Zinc(II) Coordination Compounds with Nicotinic and Picolinic Acids

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New methods for the electrochemical synthesis of copper(II) and zinc(II) coordination compounds with pyridinecarboxylic acids (nicotinic and picolinic) have been developed. The resulting compounds were characterized by quantitative analysis and IR spectroscopy. The vibrational frequencies of the synthesized compounds were calculated by a DFT quantum-chemical method, and the experimental IR spectra were interpreted on this basis. It was found that pyridinecarboxylate ions in all cases are coordinated both at the nitrogen atom and at the carboxylate group, however, in the case of nicotinic acid, this leads to the formation of coordination polymers, whereas for picolinic acid, the formation of mononuclear complexes is typical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abdel-Mohsen, M.A., Malak, C.A.A., and ElShafey, E.S., Adv. Med. Sci., 2019, vol. 64, p. 202. https://doi.org/10.1016/j.advms.2018.08.014

    Article  PubMed  Google Scholar 

  2. Tuorkey, M.J.F.-A. and Abdul-Aziz, K.K., Biomed. Pharmacother., 2009, vol. 63, p. 194. https://doi.org/10.1016/j.biopha.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Broadhurst, C.L., Schmidt, W.F., Reeves, J.B., Polansky, M.M., Gautschi, K., and Anderson, R.A., J. Inorg. Biochem., 1997, vol. 66, no. 2, p. 119. https://doi.org/10.1016/S0162-0134(96)00192-4

    Article  CAS  Google Scholar 

  4. Nair, L.P., Bijini, B.R., Divya, R., Nair, P.B., Eapen, S.M., Dileep Kumar, B.S., Nishanth Kumar, S., Nair, C.M.K., Deepa, M., and RajendraBabu, K., J. Mol. Struct., 2017, vol. 1147, p. 397. https://doi.org/10.1016/j.molstruc.2017.06.047

    Article  CAS  Google Scholar 

  5. Sahin, K., Onderci, M., Sahin, N., Gulcu, F., Yildiz, N., Avci, M., and Kucuk, O., Anim. Feed Sci. Technol., 2006, vol. 129, p. 39. https://doi.org/10.1016/j.anifeedsci.2005.11.009

    Article  CAS  Google Scholar 

  6. Ciubotariu, D., Nechifor, M., and Dimitriu, G., J. Trace Elem. Med. Biol., 2018, vol. 50, p. 676. https://doi.org/10.1016/j.jtemb.2018.06.025

    Article  CAS  PubMed  Google Scholar 

  7. Do Nascimento, A.L.C.S., Caires, F.J., Gomes, D.J.C., Gigante, A.C., and Ionashiro, M., Thermochim. Acta, 2014, vol. 575, p. 212. https://doi.org/10.1016/j.tca.2013.10.014

    Article  CAS  Google Scholar 

  8. Liu, B., Liu, Y., Chai, J., Hu, X., Wu, D., and Yang, B., J. Inorg. Biochem., 2016, vol. 164, p. 110. https://doi.org/10.1016/j.jinorgbio.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Xue, D., Peng, Q.-X., Li, D., and Zhan, S.-Z., Polyhedron, 2017, vol. 126, p. 239. https://doi.org/10.1016/j.poly.2017.01.044

    Article  CAS  Google Scholar 

  10. Goher, M.A.S., Abu-Youssef, М.А.М., and Mautner, F.A., Polyhedron, 1996, vol. 15, no. 3, p. 453. https://doi.org/10.1016/0277-5387(95)00245-N

    Article  CAS  Google Scholar 

  11. Tella, A.C., Oladipo, A.C., Adeyemi, O.G., Oluwafemi, O.S., Oguntoye, S.O., Alimi, L.O., Ajayi, J.T., and Degni, S.K., Solid State Sci., 2017, vol. 68, no. 6, p. 1. https://doi.org/10.1016/j.solidstatesciences.2017.03.017

    Article  CAS  Google Scholar 

  12. Yeh, Ch.-W., Suen, M.-Ch. Hu, H.-L., Chen, J.-D., and Wang, J.-Ch., Polyhedron, 2004, vol. 23, no. 11, p. 1947. https://doi.org/10.1016/j.poly.2004.04.026

    Article  CAS  Google Scholar 

  13. Segl’a, P., Jamnický, M., Koman, M., Šima, J., and Glowiak, T., Polyhedron, 1998, vol. 17, nos. 25–26, p. 4525. https://doi.org/10.1016/S0277-5387(98)00259-9

    Article  Google Scholar 

  14. Żurowska, B., Ochocki, J., Mroziński, J., Ciunik, Z., and Reedijk, J., Inorg. Chim. Acta, 2004, vol. 357, p. 755. https://doi.org/10.1016/j.ica.2003.06.017

    Article  CAS  Google Scholar 

  15. Jia, H.-B., Yu, J.-H., Xu, J.-Q., Ye, L., Ding, H., Jing, W.-J., Wang, T.-G., Xu, J.-N., and Li, Z.-Ch., J. Mol. Struct., 2002, vol. 641, p. 23. https://doi.org/10.1016/S0022-2860(02)00168-0

    Article  CAS  Google Scholar 

  16. Lu, J.Y. and Kohler, E.E., Inorg. Chem. Commun., 2002, vol. 5, p. 600. https://doi.org/10.1016/S1387-7003(02)00490-2

    Article  CAS  Google Scholar 

  17. Rodríguez, A. and García-Vázquez, J.A., Coord. Chem. Rev., 2015, vol. 303, p. 42. https://doi.org/10.1016/j.ccr.2015.05.006

    Article  CAS  Google Scholar 

  18. Skopenko, V.V., Garnovskii, A.D., Kokozei, V.N., Kuzharov, A.S., Gokhon-Zorilla, G., Burlov, A.S., Vasilyeva, O.Yu., Pavlenko, V.A., Kharisov, B.I., Kherets, B.M., Blanco, M.L., and Garnovskii, D.A., Pryamoi sintez koordinatsionnykh soedinenii (Direct Synthesis of Coordination Compounds), К.: Venturi, 1997.

  19. Garnovskii, D.A., Levchenkov, S.I., Antsyshkina, A.S., Sadikov, G.G., Sergienko, V.S., Makarova, N.I., Uraev, A.I., Burlov, A.S., Vlasenko, V.G., and Zubavichus, Ya.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, p. 1528. https://doi.org/10.1134/S0036023615120116

    Article  CAS  Google Scholar 

  20. Andriychenko, E.O., Zelenov, V.I., Bovyka, V.E., and Bukov, N.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 4, p. 707. https://doi.org/10.1134/S1070363221040204

    Article  CAS  Google Scholar 

  21. Berezovskii, V.M., Khimiya vitaminov (Chemistry of Vitamins), Moscow: Pishchevaya Prom–t’, 1973.

  22. Vargová, Z., Zeleòák, V., Císaøová, I., and Györyová, K., Thermochim. Acta, 2004, vol. 423, p. 149. https://doi.org/10.1016/j.tca.2004.03.016

    Article  CAS  Google Scholar 

  23. Xin, Y., Zhang, N., Han, X.X., Li, B., Sun, Y., Sun, L.X., Bai, F.Y., and Xing, Y.H., J. Mol. Struct., 2020, vol. 1205, p. 1. https://doi.org/10.1016/j.molstruc.2019.127656

    Article  CAS  Google Scholar 

  24. Kalinowska, M., Borawska, M., Świsłocka, R., Piekut, J., and Lewandowski, W., J. Mol. Struct., 2007, vols. 834–836, p. 419. https://doi.org/10.1016/j.molstruc.2006.11.045

    Article  CAS  Google Scholar 

  25. Wang, Q., Yu, Z., Wang, Q., Li, W., Gao, F., and Li, Sh., Inorg. Chim. Acta, 2012, vol. 383, p. 230. https://doi.org/10.1016/j.ica.2011.11.013

    Article  CAS  Google Scholar 

  26. Enthaler, S., Wu, X.-F., Weidauer, M., Irran, E., and Dӧhlert, P., Inorg. Chem. Commun., 2014, vol. 46, p. 320. https://doi.org/10.1016/j.inoche.2014.06.020

    Article  CAS  Google Scholar 

  27. Andersson, M.P.and Uvdal, P., J. Phys. Chem. A, 2005, vol. 109, p. 2937–2941. https://doi.org/10.1021/jp045733a

    Article  CAS  PubMed  Google Scholar 

  28. Zelenov, V.I., Andriychenko, E.O., and Shvyreva, P.S., Dep.VINITI, Krasnodar, 2013, no. 199-В2013

  29. Neese, F., WIREs Comput. Mol. Sci., 2011, vol. 2, p. 73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  30. Neese, F., WIREs Comput. Mol. Sci., 2017, vol. 8, p. 1. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  31. Becke, A.D., Phys. Rev. (A), 1988, vol. 38, p. 3098. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  32. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  33. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32. 1456. https://doi.org/10.1002/jcc.21759

  34. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  35. Allouche, A.-R., J. Comput. Chem., 2011, vol. 32, p. 174. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out using the equipment of the Ecoanalytical and Analytical Center for System Research, Mathematical Modeling, and Environmental Safety of the South of Russia, of Kuban State University and the Scientific and Educational Center “Diagnostics of the Structure and Properties of Nanomaterials” of the Kuban State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Andriychenko.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 9, pp. 1416–1425 https://doi.org/10.31857/S0044460X21090134.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriychenko, E.O., Zelenov, V.I., Bespalov, A.V. et al. Electrochemical Synthesis and Characterization of Copper(II) and Zinc(II) Coordination Compounds with Nicotinic and Picolinic Acids. Russ J Gen Chem 91, 1697–1705 (2021). https://doi.org/10.1134/S1070363221090139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221090139

Keywords:

Navigation