Skip to main content
Log in

Synthesis of Chiral 3,3ʹ-Disubstituted (S)-BINOL Derivatives via the Kumada and Suzuki Coupling and Their Antibacterial Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new series of 3,3ʹ-disubstituted chiral (S)-BINOL derivatives 6a6k has been synthesized via the Kumada and Suzuki–Miyaura coupling reactions using (S)-BINOL as the initial compound. The Kumada coupling has been found to be superior in terms of yields and reaction time. All the synthesized compounds have been screened for their antibacterial activity against Gram-positive and Gram-negative organisms using Penicillin and Streptomycin as standards. The most potent antibacterial activity has been determined for compounds 6a,6b, 6c, and 6d with MIC values ranging from 1.17 to 4.68 μg/mL against all bacterial strains tested. Molecular docking studies has presented an insight into the binding pattern of the top active ligands with the respective target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ankireddy, A.R., Syed, R., Gundla, R., Manasa, K.L., Reddy, C.V.R., Yatam, S., and Paidikondala, K., Russ. J. Gen. Chem., 2019, vol. 89, p. 2544. https://doi.org/10.1134/S107036321912034X

    Article  CAS  Google Scholar 

  2. Ashok Reddy, A., Kalyani, P., Rambabu, G., Tuniki, B., Ramakanth, P., and Venkanna, B., Chemistry Select., 2019, vol. 4, p. 5563. https://doi.org/10.1002/slct.201803937

    Article  CAS  Google Scholar 

  3. Orazio, G.D., Martorana, A.M., Filippi, G., Polissi, A., Gioia, L.D., and Ferla, B.L., Chemistry Select., 2016, vol. 1, p. 2444. https://doi.org/10.1002/slct.201600516

    Article  CAS  Google Scholar 

  4. Santosh, R., Selvam, M.K., Kanekar, S.U., Nagaraja, G.K., and Kumar, M., Chemistry Select., 2018, vol. 3, p. 3892. https://doi.org/10.1002/slct.201800222

    Article  CAS  Google Scholar 

  5. Govindaiah, S., Sreenivasa, S., Ramakrishna, R.A., Chakrapani Rao, T.M., and Nagabhushana, H., Chemistry Select., 2018, vol. 3, p. 8111. https://doi.org/10.1002/slct.201801364

    Article  CAS  Google Scholar 

  6. Laurel, L.S., and Don Tilley, T., J. Am. Chem. Soc., 2001, vol. 123, p. 2683. https://doi.org/10.1021/ja015509o

    Article  CAS  Google Scholar 

  7. Shibasaki, M., and Yoshikawa, N., Chem. Rev., 2002, vol. 102, p. 2187. https://doi.org/10.1021/cr010297z

    Article  CAS  PubMed  Google Scholar 

  8. Evans, C.G., and Gestwicki, J.E., Org. Let., 2009, vol. 11, p. 14. https://doi.org/10.1021/ol901114f

    Article  CAS  Google Scholar 

  9. Rajakumar, P., Selvam, S., Shanmugaiah, V., and Mathivanan, N., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 5270. https://doi.org/10.1016/j.bmcl.2006.12.071

    Article  CAS  PubMed  Google Scholar 

  10. Rajakumar, P., Raja, R., Selvam, S., Rengasamy, R., and Nagaraj, S., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 3466. https://doi.org/10.1016/j.bmcl.2009.05.019

    Article  CAS  PubMed  Google Scholar 

  11. Thirunarayanan, A., Raja, S., Mohanraj, G., and Rajakumar, P., RSC Adv., 2014, vol. 4, p. 41778. https://doi.org/10.1039/c4ra04967e

    Article  CAS  Google Scholar 

  12. Vidal, M., Elie, C.R., Campbell, S., Claingand, A., and Schmitzer, A.R., Med. Chem. Commun., 2014, vol. 5, p. 436. https://doi.org/10.1039/C3MD00293D

    Article  CAS  Google Scholar 

  13. Ashok, D., Shravani, D., Sarasija, M., and Sudershan, K., Russ. J. Gen. Chem., 2015, vol. 85(5), p. 1152. https://doi.org/10.1134/S1070363215050254

    Article  CAS  Google Scholar 

  14. Wipf, P., and Jung, J.K., J. Org. Chem., 2000, vol. 65, p. 6319. https://doi.org/10.1021/jo000684t

    Article  CAS  PubMed  Google Scholar 

  15. Huang, J., and Nolan, S.P., J. Am. Chem. Soc., 1999, vol. 121, p. 9889. https://doi.org/10.1021/ja991703n

    Article  CAS  Google Scholar 

  16. Perez Garcia, P.M., Di Franco, T., Orsino, A., Ren, P., and Xile, H., Org. Lett., 2012, vol.14, p. 16. https://doi.org/10.1021/ol302067b

    Article  CAS  Google Scholar 

  17. Patel, N.D., Rivalti, D., Buono, F.G., Chatterjee, A., Qu, B., Braith, S., Desrosiers, J.N., Rodriguez, S., Sieber, J.D., Haddad, N., Fandrick, K.R., Lee, H., Yee, N.K., Busacca, C.A., and Senanayake, C.H., Asian J. Org. Chem., 2017, vol. 6, p. 1285. https://doi.org/10.1002/ajoc.201700137

    Article  CAS  Google Scholar 

  18. Jin, L.M., Yanniani, L., Ma, J., and Quan, L., Org. Lett., 2010, vol.12, p. 15. https://doi.org/10.1021/ol1014152

    Article  CAS  Google Scholar 

  19. Seva, L., Hwang, W.S., and Sabiah, S., J. Mol. Catal. A: Chem., 2013, vol. 418, p. 125. https://doi.org/10.1016/j.molcata.2016.03.032

    Article  CAS  Google Scholar 

  20. Zhang, Z.G., Dong, Z.B., and Shan Li, J., Chirality, 2010, vol. 22, p. 820. https://doi.org/10.1002/chir.20842

    Article  CAS  PubMed  Google Scholar 

  21. Ankireddy, A., Gundla, R., Balaraju, T., Banothu, V., Gundla, K.P., Addepally, U., and Chimakurthy, J., Eur. J. Chem., 2018, vol. 9(4), p. 322. https://doi.org/10.5155/eurjchem.9.4.322-330.1748

    Article  CAS  Google Scholar 

  22. Mali, P.R., Chirke, S.S., and Meshram, H.M., Chemistry Select., 2017, vol. 2, p. 10718. https://doi.org/10.1002/slct.201702135

    Article  CAS  Google Scholar 

  23. Hatano, M., Horibe, T., and Ishihara, K., J. Am. Chem. Soc., 2010, vol. 132, p. 56. https://doi.org/10.1021/ja909874b

    Article  CAS  PubMed  Google Scholar 

  24. Kabir, M.S., Monte, A., and Cook, J.M., Tetrahedron Lett., 2007, vol. 48, p. 7269. https://doi.org/10.1016/j.tetlet.2007.08.047

    Article  CAS  Google Scholar 

  25. Lee, C.Y. and Cheon, C.H., J. Org. Chem., 2013, vol. 78(14), p. 7086. https://doi.org/10.1021/jo400928q

    Article  CAS  PubMed  Google Scholar 

  26. Battula, K., Narsimha, S., Reddy Nagavelli, V., and Srinivasa Rao, M., J. Serb. Chem. Soc., 2016, vol. 81, p. 1. https://doi.org/10.2298/JSC151222088B

    Article  Google Scholar 

Download references

Funding

We acknowledge Department of Science and Technology (DST) (DST-SERB-ECR/2016/000288) India for providing the financial assistance and Gandhi Institute of Technology (GITAM) University for providing the facility. We would like to thank Prof.G.A.Rama Rao, Principal SoS, (GITAM), for his voluble suggestions while preparing the manuscript. The author RS thank CSIR-HRDG for the award of CSIR-SRAship [13(8906-A)/2017-pool].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gundla.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankireddy, A.R., Paidikondala, K., Syed, R. et al. Synthesis of Chiral 3,3ʹ-Disubstituted (S)-BINOL Derivatives via the Kumada and Suzuki Coupling and Their Antibacterial Activity. Russ J Gen Chem 90, 1507–1517 (2020). https://doi.org/10.1134/S1070363220080198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220080198

Keywords:

Navigation