Skip to main content
Log in

Modern Catalysts and Methods of Nonoxidative Methane Conversion

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Modern methods of nonoxidative methane conversion, as well as catalysts used for this process were considered. The mechanisms of the transformation of the methane molecules on zeolite and metal oxide systems (two-step processes) were discussed. Research results on co-conversion of methane and n-pentane were presented. The influence of the nature of the metal, type of the support, and process conditions on the characteristics of chemisorption and degree of dehydrogenation of methane was demonstrated. The reactivity of the resultant hydrocarbon species in the reaction of formation of aromatic hydrocarbons with n-pentane was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lykov, O.P. and Shlikhter, E.B., Gazokhimiya, 2010, no. 6 (16), p. 32.

    Google Scholar 

  2. Storonskii, N.M., Khryukin, V.T., Mitronov, D.V., and Shvachko, E.V., Ross. Khim. Zh., 2008, vol. 52, no. 6, p. 63.

    CAS  Google Scholar 

  3. Kiryushin, P.A., Knizhnikov, A.Yu., Kochi, K.V., Puzanova, T.A., and Uvarov, S.A., Poputnyi neftyanoi gaz v Rossii: szhigat’ nel’zya, pererabatyvat’ (Associated Petroleum Gas in Russia: Stop Flaring, Process), Moscow: World Wide Fund For Nature (WWF), 2013.

  4. Mastalerz, M., in Future Energy, Letcher, T.M., Ed., Amsterdam: Elsevier, 2014, 2nd ed., p. 145.

  5. Boswell, R., Yamamoto, K., Lee, S., Collett, T., Kumar, P., and Dallimore, S., Improved, Sustainable, and Clean Options for our Planet, in Future Energy, Letcher, T.M., Ed., 2014, 2nd ed., p. 159.

  6. Novikov, Yu.N., Neftegaz. Geol. Teor. Prakt., 2013, vol. 8, no. 1, p. 1.

    Google Scholar 

  7. Anshits, A.G. and Voskresenskaya, E.N., Soros. Obraz. Zh., 1999, no. 9, p. 38.

    Google Scholar 

  8. Arutyunov, V.S. and Strekova, L.N., J. Mol. Catal. A: Chem., 2017, vol. 426, p. 326.

    CAS  Google Scholar 

  9. Mordkovich, V.Z., Sineva, L.V., Kul’chakovskaya, E.V., and Asalieva, E.Yu., Katal. Neftepererab. Prom–st., 2015, vol. 15, no. 5, p. 23.

    CAS  Google Scholar 

  10. Khasin, A.A., Gazokhimiya, 2008, no. 2, p. 28.

    Google Scholar 

  11. Yide, X., Xinhe, B., and Liwu, L., J. Catal., 2003, vol. 216, p. 386.

  12. Wang, L., Tao, L., Xie, M., and Xu, G., Catal. Lett., 1993, vol. 21, p. 35.

    CAS  Google Scholar 

  13. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1974.

  14. Busca, G., Micropor. Mesopor. Mater., 2017, vol. 254, p. 3.

    CAS  Google Scholar 

  15. Majhi, S., Mohanty, P., Wang, H., and Pant, K.K., J. Energ. Chem., 2013, vol. 22, p. 543.

    CAS  Google Scholar 

  16. Liu, S., Wang, L., Ohnishi, R., and Ichikawa, M., J. Catal., 1999, vol. 181, p. 175.

    CAS  Google Scholar 

  17. Wang, D.Y., Kan, Q.B., Xu, N., Wu, P., and Wu, T.H., Catal. Today, 2004, vols. 93–95, p. 75.

    Google Scholar 

  18. Martínez, A., Peris, E., and Sastre, G., Catal. Today, 2005, vols. 107–108, p. 676.

    Google Scholar 

  19. Liu, H., Yang, S., Wu, S., Shang, F., Yu, X., Xu, C., Guan, J., and Kan, Q., Energy, 2011, vol. 36, p. 1582–1589.

    CAS  Google Scholar 

  20. Liu, H., Wu, S., Guo, Y., Shang, F., Yu, X., Ma, Y., Xu, C., Guan, J., and Kan, Q., Fuel, 2011, vol. 90, p. 1515.

    CAS  Google Scholar 

  21. Mamonov, N.A., Grigoriev, D.A., Mikhailov, M.N., Alkhimov, S.A., Fadeeva, E.V., and Kustov, L.M., Russ. Chem. Rev., 2013, vol. 82, no. 6, p. 567.

    Google Scholar 

  22. Vosmerikov, A.V., Korobitsyna, L.L., Kozlov, V.V., Arbuzova, N.V., Zaikovskii, V.I., and Zhuravkov, S.P., Kinet. Catal., 2011, vol. 52, no. 3, p. 427.

    CAS  Google Scholar 

  23. Chen, L.Y., Lin, L.W., Xu, Z.S., Li, X.S., and Zhang, T., J. Catal., 1995, vol. 157, no. 1, p. 190.

    CAS  Google Scholar 

  24. Shu, Y., Ohnishi, R., and Ichikawa, M., J. Catal., 2002, vol. 206, no. 1, p. 134.

    CAS  Google Scholar 

  25. Zang, C.-L., Li, S., Yuan, Y., Zhang, W.-X., Wu, T.-H., and Lin, L.-W., Catal. Lett., 1998, vol. 56, p. 207–213.

    Google Scholar 

  26. Ma, D., Lu, Y., Su, L., Xu, Z., Tian, Z., Xu, Y., Lin, L., and Bao, X., J. Phys. Chem., 2002, vol. 106, p. 8524.

    CAS  Google Scholar 

  27. Ding, M., Meitzner, G.D., and Iglesia, E., J. Catal., 2002, vol. 206, no. 1, p. 14.

    CAS  Google Scholar 

  28. Ma, S., Guo, X., Zhao, L., Scott, S., and Bao, X., J. Energy Chem., 2013, vol. 22, p. 1.

    Google Scholar 

  29. Song, Y., Sun, C., Shen, W., and Lin, L., Catal. Lett., 2006, vol. 109, nos. 1–2, p. 21.

    CAS  Google Scholar 

  30. Song, Y., Sun, C., Shen, W., and Lin, L., Appl. Catal. A: Gen., 2007, vol. 317, no. 2, p. 266.

    CAS  Google Scholar 

  31. Solymosi, F., Csereny, A., Szoke, A., Bansagi, T., and Oszko, A., J. Catal., 1997, vol. 165, no. 2, p. 150.

    CAS  Google Scholar 

  32. Luo, W., Bruijnincx, P.C.A., and Weckhuysen, B.M., J. Catal., 2014, vol. 320, p. 33.

    CAS  Google Scholar 

  33. Kozlov, V.V., Korobitsyna, L.L., Vosmerikov, A.V., and Zaikovskii, V.I., Khim. Inter. Ustoich. Razv., 2014, vol. 22, no. 6, p. 619.

    CAS  Google Scholar 

  34. Sayari, A., Wang, H.T., and Goodwin, J.G.Jr., J. Catal., 1985, vol. 93, no. 2, p. 209.

    Google Scholar 

  35. Hassan, A. and Sayari, A., Appl. Catal. A: Gen., 2006, vol. 297, p. 159.

    CAS  Google Scholar 

  36. Malinowski, A., Ohnishia, R., and Ichikawa, M., Catal. Lett., 2004, vol. 96, nos. 3–4, p. 141.

    CAS  Google Scholar 

  37. Liu, H., Shen, W., Bao, X., and Xu, Y., Appl. Catal. A: Gen., 2005, vol. 295, p. 79.

    CAS  Google Scholar 

  38. Su, L., Liu, L., Zhuang, J., Wang, H., Li, Y., Shen, W., Xu, Y., and Bao, X., Catal. Lett., 2003, vol. 91, nos. 3–4, p. 155.

    CAS  Google Scholar 

  39. Tshabalala, T.E., Coville, N.J., and Scurrell, M.S., Catal. Commun., 2016, vol. 78, p. 37.

    CAS  Google Scholar 

  40. Ohnishi, R., Issoh, K., Wang, L., and Ichikawa, M., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 3603.

    Google Scholar 

  41. Weckhuysen, B.M., Wang, D., Rosynek, M. P., and Lunsford, J.H., J. Catal., 1998, vol. 175, p. 338.

    CAS  Google Scholar 

  42. Vosmerikova, A.V., Echevskii, G.V., Korobitsyna, L.L., Arbuzova, N.V., Kodenev, E.G., Velichkina, L.M., and Zhuravkov, C.P., Kinet. Catal., 2007, vol. 48, no. 3, p. 409.

    Google Scholar 

  43. Abdelsayed, V., Smith, M.W., and Shekhawat, D., Appl. Catal. A: Gen., 2015, vol. 505, p. 365.

    CAS  Google Scholar 

  44. Vosmerikov, A.V., Zaykovskii, V.I., Korobitsyna, L.L., Kodenev, E.G., Kozlov, V.V., and Echevskii, G.V., Stud. Surf. Sci. Catal., 2006, vol. 162, p. 913.

    CAS  Google Scholar 

  45. Stepanov, A.A., Arbuzova, N.V., and Kozlov, V.V., Probl. Geol. Osv. Nedr, 2013, p. 78.

  46. Fila, V., Bernauer, M., Bernauer, B., and Sobalik, Z., Catal. Today, 2015, vol. 256, p. 269.

    CAS  Google Scholar 

  47. Kozlov, V.V. and Korobitsyna, L.L., Probl. Geol. Osv. Nedr, 2013, p. 59.

  48. Vosmerikov, A.V., Korobitsyna, L.L., Kozlov, V.V., Barbashin, Y.E., Zaikovskii, V.I., Echevskii, G.V., and Zhuravkov, S.P., Kinet.Catal., 2009, vol. 50, no. 5, p. 725.

    CAS  Google Scholar 

  49. Aboul-Gheit, A.K., Awadallah, A.E., Aboul-Enein, A.A., and Mahmoud, A.H., Fuel, 2011, vol. 90, no. 10, p. 3040.

    CAS  Google Scholar 

  50. Tian, M., Zhao, T.Q., Chin, P.L., Liu, B.S., and Cheung, A.S.-C., Chem. Phys. Lett., 2014, vol. 592, p. 36.

    CAS  Google Scholar 

  51. Liu, B., Yang, Y., and Sayari, A., Appl. Catal. A: Gen., 2001, vol. 214, no. 1, p. 95.

    CAS  Google Scholar 

  52. Zhang, Y., Wang, D., Fei, J., and Zheng, X., Aust. J. Chem., 2002, vol. 55, no. 8, p. 531.

    CAS  Google Scholar 

  53. Kubota, T., Oshima, N., Nakahara, Y., Yanagimoto, M., and Okamoto, Y., J. Jpn. Petrol. Inst., 2006, vol. 49, no. 3, p. 127.

    CAS  Google Scholar 

  54. Aboul-Gheit, A.K., Awadallah, A.E., El-Kossy, S.M., and Mahmoud, A.H., J. Nat. Gas Chem., 2008, vol. 17, p. 337.

    CAS  Google Scholar 

  55. Vosmerikova, L.N., Vosmerikov, A.V., Barbashin, Ya.E., Kozlov, V.V., and Zaikovskii, V.I., Petrol. Chem., 2009, vol. 49, no. 1, p. 47.

    Google Scholar 

  56. Aboul-Gheit, A.K. and Awadallah, A.E., J. Nat. Gas Chem., 2009, vol. 18, p. 71.

    CAS  Google Scholar 

  57. Burns, S., Hargreaves, J.S.J., Pal, P., Parida, K.M., and Parija, S., J. Mol. Catal. A: Chem., 2006, vol. 245, p. 141.

  58. Wang, L.S., Xu, Y.D., Wong, S.-T., Cui, W., and Guo, X., Appl. Catal. A: Gen., 1997, vol. 152, p. 173.

    CAS  Google Scholar 

  59. Ngobeni, M.W., Carley, A.F., Scurrell, M.S., and Nicolaides, C.P., J. Mol. Catal. A: Chem., 2009, vol. 305, p. 40.

    CAS  Google Scholar 

  60. Tshabalala, T.E., Coville, N.J., and Scurrell, M.S., Appl. Catal. A: Gen., 2014, vol. 485, p. 238.

    CAS  Google Scholar 

  61. Kojima, R., Kikuchi, S., Ma, H., Bai, J., and Ichikawa, M., Catal. Lett., 2006, vol. 110, nos. 1–2, p. 15.

    CAS  Google Scholar 

  62. Cheng, X., Yan, P., Zhang, X., Yang, F., Dai, C., Li, D., and Ma, X.-X., Mol. Catal., 2017, vol. 437, p. 114.

    CAS  Google Scholar 

  63. Larachi, F., Oudghiri-Hassani, H., Iliuta, M.C., Grandjean, B.P.A., and McBreen, P.H., Catal. Lett., 2002, vol. 84, nos. 3–4, p. 183.

    Google Scholar 

  64. Xie, M.-S., Yang, X., Chen, W.-H., Tao, L.-X., Wang, X.-L., Xu, G.-F., Wang, L.-S., Xu, Y.-D., Liu, S.-T., and Guo, X.-X., Stud. Surf. Sci. Catal., 1997, vol. 105, pp. 869.

  65. Shu, Y., Xu, Y., Wong, S.-T., Wang, L., and Guo, X., J. Catal., 1997, vol. 170, p. 11.

    CAS  Google Scholar 

  66. Li, W., Meitzner, G.D., Borry, R.W.III, and Iglesia, E., J. Catal., 2000, vol. 191, p. 373.

    CAS  Google Scholar 

  67. Belgued, M., Paréja, P., and Amariglio, A., Nature, 1991, vol. 352, p. 789.

  68. Koerts, T., Deelen, M.J.A., and van Santen, R.A., J. Catal., 1992, vol. 138, p. 101.

    CAS  Google Scholar 

  69. Marceau, E., Tatibouёt, J.M., Che, M., and Saint-Just, J., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 247.

    CAS  Google Scholar 

  70. Belgued, M., Amariglio, A., Paréja, P., and Amariglio, H., J. Catal., 1996, vol. 159, p. 441.

    CAS  Google Scholar 

  71. Paréja, P., Molina, P., Amariglio, A., and Amariglio, H., Appl. Catal. A: Gen., 1998, vol. 168, p. 289.

    Google Scholar 

  72. Belgued, M., Amariglio, A., Lefort, L., Paréja, P., and Amariglio, H., J. Catal., 1996, vol. 161, p. 282.

    CAS  Google Scholar 

  73. Karakaya, C. and Kee, R.J., Prog. Energy Combust. Sci., 2016, vol. 55, p. 60–97.

    Google Scholar 

  74. Moya, S.F., Martins, R.L., and Schmal, M., Appl. Catal. A: Gen., 2011, vol. 396, p. 159.

    CAS  Google Scholar 

  75. Martins, R.L., Baldanza, M.A.S., Souza, M.M.V.M., and Schmal, M., Appl. Catal. A: Gen., 2007, vol. 318, p. 207.

    CAS  Google Scholar 

  76. Barrabés, N., Föttinger, K., Dafinov, A., Medina, F., Rupprechter, G., Llorca, J., and Sueiras, J.E., Appl. Catal., B: Environ., 2009, vol. 87, p. 84.

    Google Scholar 

  77. Odier, E., Schuurman, Y., Zanthoff, H., Millet, C., and Mirodatos, C., Stud. Surf. Sci. Catal., 2001, vol. 133, p. 327.

    CAS  Google Scholar 

  78. Mueller, V.H., Dudukovi´c, M.P., and Lo, C.S., Appl. Catal. A: Gen., 2014, vol. 488, p. 138.

    CAS  Google Scholar 

  79. Ota, A., Kunkes, E.L., Kröhnert, J., Schmal, M., and Behrens, M., Appl. Catal. A: Gen., 2013, vol. 452, p. 203.

    CAS  Google Scholar 

  80. Szanyi, J. and Goodman, D.W., Rev. Sci. Instrum., 1993, vol. 64, p. 2350.

    CAS  Google Scholar 

  81. Lee, M.B., Yang, Q.Y., and Ceyer, S.T., J. Chem. Phys., 1987, vol. 87, p. 2724.

  82. Valden, M., Pere, J., Xiang, N., and Pessa, M., Chem. Phys. Lett., 1996, vol. 257, p. 289.

    CAS  Google Scholar 

  83. Yang, Q.Y., Johnson, A.D., Maynard, K.J., and Ceyer, S.T., J. Am. Chem. Soc., 1989, vol. 111, p. 8748.

    CAS  Google Scholar 

  84. Beebe, T.P., Goodman, D.W., Kay, B.D., and Yates, J.T., J. Chem. Phys., 1987, vol. 87, p. 2305.

    CAS  Google Scholar 

  85. Choudhary, T.V. and Goodman, D.W., Top. Catal., 2002, vol. 20, p. 35.

    CAS  Google Scholar 

  86. Carey, J.J. and Nolan, M., Appl. Catal., B: Environ., 2016, vol. 197, p. 324.

    CAS  Google Scholar 

  87. Sun, Q., Li, Z., Du, A., Chen, J., Zhu, Z., and Smith, S.C., Fuel, 2012, vol. 96, p. 291.

    CAS  Google Scholar 

  88. Wang, R., Ran, J., Qi, W., Niu, J., and Du, X., Comput. Theor. Chem., 2015, vol. 1073, p. 94.

    CAS  Google Scholar 

  89. Xi, Y., Chen, B., Lin, X., Fu, H., and Wang, C., Comput. Theor. Chem., 2016, vol. 1076, p. 65.

    CAS  Google Scholar 

  90. Zhu, Z.W. and Zheng, Q.R., Appl. Therm. Eng., 2016, vol. 108, p. 605.

    CAS  Google Scholar 

  91. Russell, J., Zapol, P., Král, P., and Curtiss, L.A., Chem. Phys. Lett., 2012, vol. 536, p. 9.

    CAS  Google Scholar 

  92. Li, J., Croiset, E., and Ricardez-Sandoval, L., J. Mol. Catal. A: Chem., 2012, vol. 365, p. 103.

    CAS  Google Scholar 

  93. Golinskii, D.V., Vinichenko, N.V., Pashkov, V.V., Udras, I.E., Krol’, O.V., Talzi, V.P., and Belyi, A.S., Kinet. Katal., 2016, vol. 46, no. 5, p. 1.

    Google Scholar 

  94. Vinichenko, N.V., Golinskii, D.V., Belyi, A.S., Pashkov, V.V., and Krol’, O.V., Khim. Inter. Ustoich. Razv., 2015, vol. 23, no. 6, p. 701.

    CAS  Google Scholar 

  95. Bukhtiyarov, V.I., Zaikovskii, V.I., Kashin, A.S., and Ananikov, V.P., Usp. Khim., 2016, vol. 85, no. 11, p. 1198.

    CAS  Google Scholar 

  96. Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific Basis for the Preparation of Catalysts: Introduction to Theory and Practice), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.

  97. Vinichenko, N.V., Golinsky, D.V., Pashkov, V.V., Zatolokina, E.V., Dvoyan, A.V., Gulyaeva, T.I., Trenikhin, M.V., Krol, O.V., and Belyi, A.S., Procedia Eng., 2016, vol. 152, p. 101.

  98. Tapin, B., Epron, F., Especel, C., Ly, B., Pinel, C., and Besson, M., Catal. Today, 2014, vol. 235, p. 127.

    CAS  Google Scholar 

  99. Feio, L.S.F., Hori, C.E., Damyanova, S., Noronha, F.B., Cassinelli, W.H., Marques, C.M.P., and Bueno, J.M.C., Appl. Catal. A: Gen., 2007, vol. 316, no. 1, p. 107.

    CAS  Google Scholar 

  100. Baranowska, K. and Okal, J., Appl. Catal. A: Gen., 2015, vol. 499, p. 158.

    CAS  Google Scholar 

  101. Pachatouridou, E., Papista, E., Iliopoulou, E.F., Delimitis, A., Goula, G., Yentekakis, I.V., Marnellos, G.E., and Konsolakis, M., J. Environ. Chem. Eng., 2015, vol. 3, no. 2, p. 815.

    CAS  Google Scholar 

  102. Carnevillier, C., Epron, F., and Marecot, P., Appl. Catal. A: Gen., 2004, vol. 275, nos. 1–2, p. 25.

    CAS  Google Scholar 

  103. Paukshtis, E.A., Opticheskaya spektroskopiya v adsorbtsii i katalize. Primenenie IK spektroskopii (Optical Spectroscopy in Adsorption and Catalysis: Application of IR Spectroscopy), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk im. G.K. Boreskova, 2010.

  104. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, Sib. Otd., 1992.

  105. Ivanov, A.V., Stakheev, A.Yu., and Kustov, L.M., Russ. Chem. Bull., 1999, vol. 48, no. 7, p. 1255.

    CAS  Google Scholar 

  106. Smolikov, M.D., Shkurenok, V.A., Yablokova, S.S., Kir’yanov, D.I., Paukshtis, E.A., Leont’eva, N.N., Belyi, A.S., and Drozdov, V.A., Katal. Neftepererab. Prom–sti, 2016, vol. 16, no. 5, p. 51.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Physicochemical studies were carried out on the basis of the Omsk Regional Center for Collective Use, Siberian Branch, Russian Academy of Sciences.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation in accordance with the Program of Fundamental Scientific Research of State Academies of Sciences for 2013–2020 in direction V.46, project no. V.46.2.4, Stage 1 (State registration no. in the Unified State Information System of Accounting Civilian Research, Developmental, and Technological Works AAAA-A17-117021450095-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Golinskii.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golinskii, D.V., Vinichenko, N.V., Zatolokina, E.V. et al. Modern Catalysts and Methods of Nonoxidative Methane Conversion. Russ J Gen Chem 90, 1104–1119 (2020). https://doi.org/10.1134/S1070363220060286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220060286

Keywords:

Navigation