Skip to main content
Log in

2,5-Diamino-5,5-diphosphonovaleric Acid as a Ligand for an Osteotropic 188Re Radiopharmaceutical

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A modified method for the preparation of 2,5-diamino-5,5-diphosphonovaleric acid (DADP5) has been developed in the search for new synthetically available organic ligands to produce 188Re radiopharmaceuticals with an increased accumulation in the bone tissue. Interaction of the obtained acid with 188Re was studied by radio-TLC. An optimal system for separating unbound 188Re and labeled complex in a yield of at least 95% was found. The biological distribution of 188Re-DADP5 was studied based on direct radiometric data. The osteotropicity of 188Re-DADP5 and its increased accumulation in bone fracture sites, which represent oncological pathology models, was detected at a level comparable to known radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knapp, F.F. and Dash, A., Radiopharmaceuticals for Therapy, New Delhi; Heidelberg; New York; Dordrecht; London: Springer, 2016. doi 10.1007/978-81-322-2607-9

    Book  Google Scholar 

  2. Clinical Applications of Nuclear Medicine Targeted Therapy, Bombardieri, E., Seregni, E., Evangelista, L., Chiesa, C., and Chiti, A., Eds., Springer International Publishing AG, 2018, pt. 4, ch. 26, p. 345. doi 10.1007/978-3-319-63067-0_26

    Google Scholar 

  3. Pandit-Taskar, N., Batraki, M., and Divgi, C. R., J. Nucl. Med., 2004, vol. 45, no. 8, p. 1358.

    CAS  PubMed  Google Scholar 

  4. Kodina, G.E. and Krasikova, R.N., Metody polucheniya radiofarmatsevticheskikh preparatov i radionuklidnykh generatorov dlya yadernoi meditsiny (Methods for Production of Radiopharmaceuticals and Radionuclide Generators for Nuclear Medicine), Moscow: Mosk. Energ. Inst., 2014.

    Google Scholar 

  5. Klimanov, V.A., Radiobiologicheskoe i dozimetricheskoe planirovanie luchevoi i radionuklidnoi terapii (Radiobiological and Dosimetric Planning of Radiotherapy and Radionuclide Therapy), Moscow: NRNU MEPhI, 2011, Part 2.

    Google Scholar 

  6. Sundram F.X., Biomed. Imaging Interv. J., 2006, no. 2(3), p. e40. doi 10.2349/biij.2.3.e40

    Google Scholar 

  7. Kodina, G.E., Malysheva, A.O., and Klement’eva, O.E., Russ. Chem. Bull., 2016, vol. 65, no. 2, p. 350. doi 10.1007/s11172-016-1308-0

    Article  CAS  Google Scholar 

  8. Palma, E., Correia, J.D.G., Campello, M.P.C., and Santos, I., Mol. BioSyst., 2011, vol. 7, no. 11, p. 2950. doi 10.1039/c1mb05242j

    Article  CAS  PubMed  Google Scholar 

  9. Fleisch, H., Bisphosphonates in Bone Disease. From the Laboratory to the Patient, New York: Academic Press, 2000.

    Google Scholar 

  10. Russell, R.G.G., Bone, 2011, vol. 49, no. 1, p. 2. doi 10.1016/j.bone.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  11. Savio, E., Gaudiano, J., Robles, A.M., Balter, H., Paolino, A., Lo’pez, A., Hermida, J.C., De Marco, E., Martinez, G., Osinaga, E., and Knapp Jr., F.F., BMC Nucl Med., 2001, vol. 1, no. 2. doi 10.1186/1471-2385-1-2

  12. Scheffler, J., Derejko, M., Bandurski, T., and Romanowicz, G., Nucl. Med. Rev., 2003, vol. 6, no. 1, p. 55.

    Google Scholar 

  13. Petriev, V.M. et al., RF Patent no. 2567728, 2014.

    Google Scholar 

  14. Krylov, V.V. and Kochetova, T.Yu., Medical Radiology and Radiation Safety J., 2014, vol. 59, no. 6, p. 54.

    Google Scholar 

  15. Malysheva, A.O. et al., WO Patent no. 2010036140 A1, 2010.

    Google Scholar 

  16. Erfani, M., Tabatabaei, M., Doroudi, A., and Shafiei, M., J. Radioanal. Nucl. Chem., 2018. doi 10.1007/s10967-018-5781-9

    Google Scholar 

  17. Kochetova, T., Krylov, V., Smolyarchuk, M., Sokov, D., Lunev, A., Shiryaev, S., Kruglova, O., Makeenkova, T., Petrosyan, K., Dolgova, A., Poluektova, M., Galkin, V., and Kaprin, A., Int. J. Nucl. Med. Res., 2017, Special Issue, p. 92. doi 10.15379/2408-9788.2017.08

    Google Scholar 

  18. Voloznev, L.V., Klement’eva, O.E., Korsunskii, V.N., and Lysenko, N.P., Mol. Med., 2013, no. 2, p. 45.

    Google Scholar 

  19. Jaswal, A.P., Meena, V.K., Prakash, S., Pandey, A., Singh, B., Mishra, A.K., and Hazari, P.P., Front. Med., 2017, vol. 72, no. 4, p. 1. doi 10.3389/fmed.2017.00072

    Google Scholar 

  20. Yang, X.N., Zeng, J.C., Song, Y.C., Zhang, H., and Pei, F.X., Eur. Rev. Med. Pharmacol. Sci., 2014, vol. 18, no. 15, p. 2116.

    PubMed  Google Scholar 

  21. Xue, Z.-Y., Li, Q.-H., Tao, H.-Y., and Wang, C.-J., J. Am. Chem. Soc., 2011, vol. 133, no. 30, p. 11757. doi 10.1021/ja2043563

    Article  CAS  PubMed  Google Scholar 

  22. Hosain, F., Spencer, R.P., Couthon, H.M., and Sturtz, G.L., J. Nucl. Med., 1996, vol. 37, no. 1, p. 105.

    CAS  PubMed  Google Scholar 

  23. Sturtz, G., Couthon, H., Fabulet, O., Mian, M., and Rosini, S., Eur. J. Med. Chem., 1993, vol. 28, no. 11, p. 899. doi 10.1016/0223-5234(93)90043-E

    Article  CAS  Google Scholar 

  24. Sturtz, G., Appere, G., Breistol, K., Fodstad, O., Schwartsmann, G., and Hendriks, H.R., Eur. J. Med. Chem., 1992, vol. 27, no. 8, p. 825. doi 10.1016/0223-5234(92)90117-J

    Article  CAS  Google Scholar 

  25. Dunford, J.E., Kwaasi, A.A., Rogers, M.J., Barnett, B.L., Ebetino, F.H., Russell, R.G.G., Oppermann, U., and Kavanagh, K.L., J. Med. Chem., 2008, vol. 51, no. 7, p. 2187. doi 10.1021/jm7015733

    Article  CAS  PubMed  Google Scholar 

  26. Bandurina, T.A. et al., USSR Inventor’s Certificate no. 798106, 1981.

    Google Scholar 

  27. Saha, G.B., Fundamentals of Nuclear Pharmacy, New York; Heidelberg; Dordrecht; London: Springer, 2010. doi 10.1007/9781441958600

    Book  Google Scholar 

  28. Albertson, N.F. and Archer, S., J. Am. Chem. Soc., 1945, vol. 67, no. 11, p. 2043. doi 10.1021/ja01227a501

    Article  CAS  Google Scholar 

  29. Shimo, K. and Wakamatsu, S., J. Org. Chem., 1961, vol. 26, no. 10, p. 3788. doi 10.1021/jo01068a039

    Article  CAS  Google Scholar 

  30. Tsebrikova, G.S., Baulin, V.E., Kalashnikova, I.P., Ragulin, V.V., Zavel’skii, V.O., Maruk, A.Ya., Lunev, A.S., Klement’eva, O.E., Kodina, G.E., and Tsivadze, A.Yu., Russ. J. Gen. Chem., 2015, vol. 85, no. 9, p. 2071. doi 10.1134/S1070363215090091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Tsebrikova.

Additional information

Dedicated to the 110th anniversary of M.I. Kabachnik’s birth

Original Russian Text © G.S. Tsebrikova, V.V. Ragulin, V.E. Baulin, K.E. German, A.O. Malysheva, O.E. Klement’eva, G.E. Kodina, A.A. Larenkov, E.A. Lyamtseva, N.A. Taratonenkova, M.V. Zhukova, A.Yu. Tsivadze, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 9, pp. 1431–1437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsebrikova, G.S., Ragulin, V.V., Baulin, V.E. et al. 2,5-Diamino-5,5-diphosphonovaleric Acid as a Ligand for an Osteotropic 188Re Radiopharmaceutical. Russ J Gen Chem 88, 1780–1785 (2018). https://doi.org/10.1134/S1070363218090037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218090037

Keywords

Navigation