Skip to main content
Log in

The Role of Hydrogen Bond in the Mechanism of Autocatalytic Reaction between Acetic Anhydride and tert-Butyl Hydroperoxide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The role of hydrogen bonding in the autocatalytic reaction of acetic anhydride with tert-butyl hydroperoxide in CC14 has been elucidated. The stage-by-stage mechanisms of formation of hydrogen-bonded complexes. Structure and energy parameters of stable conformers of the compounds and energy of the major and transition states have been determined by means of B3LYP/aug-cc-pVDZ and B3LYP/aug-cc-pVTZ methods. The contribution of the O···HO hydrogen bonds in the stabilization of the complexes has been determined using the noncovalent interactions index. 1-Hydroxy-1-alkylperoxy compound is the most stable intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comprehensive Organic Synthesis II, Knochel, P. and Molander, G.A., Eds., Amsterdam: Elsevier Ltd., 2014.

    Google Scholar 

  2. Varfolomeeva, V.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 9, p. 1812. doi 10.1134/S1070363211090131

    Article  CAS  Google Scholar 

  3. Samuilov, A.Ya. and Samuilov, Ya.D., Butlerovsk. Soobshch., 2011, vol. 28, no. 19, p. 1.

    Google Scholar 

  4. Nosachevva, I.M., Revkov, O.A., and Perkel’, A.L., Vestn. KuzGTU, 2004. 40, no. 3, p. 78.

    Google Scholar 

  5. Ferreira, R., Garcia, H., Sousa, A.F., Guerreiro, M., Duarte, F.J.S., Freire, C.S.R., Calhorda, M.J., Silvestre, A.J.D., Kunz, W., Rebelo, L.P.N., and Pereira, C.S., RSC Adv., 2014, vol. 4, p. 2993. doi 10.1039/c3ra45910a

    Article  CAS  Google Scholar 

  6. Desiraju, G.G.R. and Steiner, T., The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford: Oxford University Press, 1999.

    Google Scholar 

  7. Varfolomeeva, V.V., Candidate Sci. (Chem.) Dissertation, Samara: Samar. Gos. Univ., 2000.

    Google Scholar 

  8. Non-Covalent Interactions in the Synthesis and Design of New Compounds, Maharramov, A.M., Mahmudov, K.T., Kopylovich, M.N., and Pombeiro, A.J.L., Hoboken: John Wiley & Sons, 2016. doi 10.1002/9781119113874

    Google Scholar 

  9. Carey, F.A. and Sundberg, R.J., Advanced Organic Chemistry, New York: Springer, 2007.

    Google Scholar 

  10. Strazzolini, P., Giumanini, A.G., and Verardo, G., Tetrahedron, 1994, vol. 50, no. 1, p. 217. doi 10.1016/S0040-4020(01)80747-X

    Article  CAS  Google Scholar 

  11. Varfolomeeva, V.V., Russ. J. Gen. Chem., 2007, vol. 77, no. 11, p. 1891. doi 10.1134/S1070363207110084

    Article  CAS  Google Scholar 

  12. Antonovskii, V.L. and Khursan, S.L., Fizicheskaya khimiya organicheskikh peroksidov (Physical Chemistry of Organic Peroxides), Moscow: Akademkniga, 2003.

    Google Scholar 

  13. Antonovskii, V.L. and Terentev, V.A., Zh. Fiz. Khim., 1969, vol. 43, no. 11, p. 2727.

    CAS  Google Scholar 

  14. Uspekhi khimii organicheskikh perekisnykh soedinenii i autookisleniya (Advanced in Chemistry of Organic Peroxide Compounds and Autooxidation), Emmanujel’, N.M., Ed., Moscow: Khimiya, 1969, p. 442.

    Google Scholar 

  15. Organic Peroxides, Swern, D., Ed., New York: Wiley InterSci., 1972, vols. 1–3, p. 112.

    Google Scholar 

  16. The Chemistry of Peroxides, Patai, S., Ed., Chichester: John Wiley & Sons, 1983, p. 212.

    Google Scholar 

  17. Antonovskii, V.L. and Terentev, V.A., Zh. Fiz. Khim., Zh. Fiz. Khim., 1969, vol. 43, no. 10, p. 2549.

    CAS  Google Scholar 

  18. Terentev, V.A. and Varfolomeeva, V.V., Zh. Obshch. Khim., 1994, vol. 64, no. 1, p. 98.

    CAS  Google Scholar 

  19. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Palm, V.A., Ed., Moscow: VINITI, 1977, vol. 3, ch. 2.

  20. Antonovskii, V.L. and Terentev, V.A., Zh. Fiz. Khim., 1966, vol. 40, no. 12, p. 3078.

    CAS  Google Scholar 

  21. Antonovskii, V.L. and Khursan, S.L., Russ. Chem. Rev., 2003, vol. 72, no. 11, p. 939. doi 10.1070/RC2003v072n11ABEH000749

    Article  CAS  Google Scholar 

  22. Smith, M.B. and March, J., March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, New York: Wiley, 2007.

    Google Scholar 

  23. Antonovskii, V.L. and Terentev, V.A., Zh. Org. Chem., 1967, vol. 3, no. 6, p. 1011.

    CAS  Google Scholar 

  24. NIST Chemistry WebBook, SRD 69. https://doi.org/webbook.nist.gov.

  25. Wu, G., van Alsenoy, C., Geise, H.J., Sluyts, E., van der Veken, B.J., Shishkov, I.F., and Khristenko, L.V., J. Phys. Chem. (A), 2000, vol. 104, no. 7, p. 1576. doi 10.1021/jp993131z

    Article  CAS  Google Scholar 

  26. Ma, C.-P., Zeng, X.-Q., and Ge, M.-F., J. Mol. Struct., 2008, vol. 875, nos. 1–3, p. 143. doi 10.1016/j.molstruc.2007.04.020

    Article  CAS  Google Scholar 

  27. Dashevskii, V.G., Konformatsionnyi analiz organicheskikh molekul (Conformational Analysis of Organic Molecules), Moscow: Khimiya, 1982.

    Google Scholar 

  28. Hydrogen Bonding in Organic Synthesis, Pihko, P.M., Ed., Wiley-VCH, 2009.

    Google Scholar 

  29. Marechal, Y., The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio Media, Amsterdam: Elsevier, 2007.

    Google Scholar 

  30. Jeffrey, G.A. and Saenger, W., Hydrogen Bonding in Biological Structures, Berlin: Springer-Verlag, 1991. doi 10.1007/978-3-642-85135-3

    Book  Google Scholar 

  31. Kyte, J., Structure in Protein Chemistry, New York: Garland Science, 2006.

    Google Scholar 

  32. Gilli, G. and Gilli, P., The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, Oxford: Oxford University Press, 2009.

    Book  Google Scholar 

  33. Granovsky, A.A., Firefly Version 8. www.classic.chem.msu.su/gran/firefly/index.html.

  34. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347. doi 10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  35. Computational Chemistry Comparison and Benchmark Data Base, NIST Standard Reference Database Number 101 Release 18, 2016. https://doi.org/cccbdb.nist.gov.

  36. Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-Garcia, J., Cohen, A.J., and Yang, W., J. Am. Chem. Soc., 2010, vol. 132, no. 18, p. 6498. doi 10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Contreras-Garcia, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., and Yang, W., J. Chem. Theory Comput., 2011, vol. 7, no. 3, p. 625. doi 10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Varfolomeeva.

Additional information

Original Russian Text © V.V. Varfolomeeva, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 5, pp. 710–716.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeeva, V.V. The Role of Hydrogen Bond in the Mechanism of Autocatalytic Reaction between Acetic Anhydride and tert-Butyl Hydroperoxide. Russ J Gen Chem 88, 855–861 (2018). https://doi.org/10.1134/S107036321805002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321805002X

Keywords

Navigation