Skip to main content
Log in

Synthesis of Pentaerythritol-Based Branching Reagents for Modification of Proteins and Nucleic Acids by [2+3] Dipolar Cycloaddition Reaction

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Alkylation of pentaerythritol symmetrically substituted with propylene glycol with propargyl bromide afforded compounds containing two or three alkyne moieties. Amidophosphite reagents and solid supports were prepared for the introduction of two and three acetylene fragments into oligonucleotides at the 3'- and 5'-positions and inside the chain under conditions of automated solid-phase oligonucleotide synthesis. Based on the trialkynyl derivative, an N-hydroxysuccinimide ester was obtained which can be used to modify biomolecules attacking the amino group. Conjugates obtained can be used for multiple modifications by [3+2] dipolar cycloaddition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrae-Marobela, K., Ghislain, F.W., Okatch, H., and Majinda, R.R., Curr. Drug. Metab., 2013, vol. 14, p. 392. doi 10.2174/13892002113149990095

    Article  CAS  Google Scholar 

  2. Bell, N.M. and Micklefield, J., ChemBioChem, 2009, vol. 10, p. 2691. doi 10.1002/cbic.200900341

    Article  CAS  Google Scholar 

  3. Juillerat-Jeanneret, L. and Schmitt, F., Med. Res. Rev., 2007, vol. 27, p. 574. doi 10.1002/med.20086

    Article  CAS  Google Scholar 

  4. Lasala, F., Arce, E., Otero, J.R., Rojo, J., and Delgado, R., Antimicrob. Agents Chemother., 2003, vol. 47, p. 3970. doi 10.1128/AAC.47.12.3970-3972.2003

    Article  CAS  Google Scholar 

  5. Krall, N., da Cruz, F.P., Boutureira, O., and Bernardes, G., Nature Chem., 2016, vol. 8, p. 103. doi 10.1038/nchem.2393

    Article  CAS  Google Scholar 

  6. McCarthy, T.D., Karellas, P., Henderson, S.A., Giannis, M., O’Keefe, D.F., Heery, G., Paull, J.R., Matthews, B.R., and Holan, G., Mol. Pharm., 2005, vol. 2, p. 312. doi 10.1021/mp050023q

    Article  CAS  Google Scholar 

  7. Qu, B., Li, X., Guan, M., Hai, L., and Wu, Y., Eur. J. Med. Chem., 2014, vol. 72, p. 110. doi 10.1016/j.ejmech.2013.10.007

    Article  CAS  Google Scholar 

  8. Touaibia, M., Shiao, T.C., Papadopoulos, A., Vaucher, J., Wang, Q., Benhamioud, K., and Roy, R., Chem. Commun., 2007, vol. 4, p. 380. doi 10.1039/b612471b

    Article  Google Scholar 

  9. Ryazantsev, D.Y., Kvach, M.V., Tsybulsky, D.A., Prokhorenko, I.A., Stepanova, I.A., Martynenko, Y.V., Gontarev, S.V., Shmanai, V.V., Zavriev, S.K., and Korshun, V.A., Analyst, 2014, vol. 139, p. 2867. doi 10.1039/c4an00081a

    Article  CAS  Google Scholar 

  10. Grow, A.E., Wood, L.L., Claycomb, J.L., and Thompson, P.A., J. Microbiol. Methods, 2003, vol. 53, p. 221. doi 10.1016/S0167-7012(03)00026-5

    Article  CAS  Google Scholar 

  11. Southern, M., Technical Focus, 1996, vol. 12, p. 110. doi 10.1016/0168-9525(96)81422-3

    CAS  Google Scholar 

  12. Moni, L., Pourceau, G., Zhanq, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J.J., and Marra, A., ChemBioChem, 2009, vol. 10, p. 1369. doi 10.1002/cbic. 200900024

    Article  CAS  Google Scholar 

  13. Kendziora, D.M., Ahmed, I., and Fruk, L., RSC Adv., 2014, vol. 4, p. 17980. doi 10.1039/C4RA01773K

    Article  CAS  Google Scholar 

  14. Rouge, J.L., Eaton, B.E., and Feldheim, D.L., Energy Environ. Sci., 2011, vol. 4, p. 398. doi 10.1039/C0EE00400F

    Article  CAS  Google Scholar 

  15. Sharma, S.K., Sehgal, N., and Kumar, A., Curr. Appl. Phys., 2003, vol. 3, p. 307. doi 10.1016/S1567-1739(02) 00219-5

    Article  Google Scholar 

  16. Scheffler, M., Dorenbeck, A., Jordan, S., Wustefeld, M., and von Kiedrowski, G., Angew. Chem. Int. Ed., 1999, vol. 38, p. 3312. doi 10.1002/(SICI)1521-3773 (19991115)38:22<3311::AID-ANIE3311>3.0.CO;2-2

    Article  CAS  Google Scholar 

  17. Guzaev, A., Salo, H., Azhayev, A., and Lönnberg, H., Bioconjug. Chem., 1996, vol. 7, p. 240. doi 10.1021/bc9600067

    Article  CAS  Google Scholar 

  18. Kuan, S.L., Wang, T., and Weil, T., Chemistry, 2016, vol. 22, p. 17112. doi 10.1002/chem.201602298

    Article  CAS  Google Scholar 

  19. Hermanson, G.T., Bioconjugate Techniques, London: Academic Press, 1996.

    Google Scholar 

  20. Gallo, M., Montserrat, J.M., and Iribarren, A.M., Braz. J. Med. Biol. Res., 2003, vol. 36, p. 143. doi 10.1590/S0100-879X2003000200001

    Article  CAS  Google Scholar 

  21. Gait, M.J., Oligonucleotide Synthesis: A practical Approach, Oxford: Oxford University Press, 1984.

    Google Scholar 

  22. Liang, L. and Astruc, D., Coord. Chem. Rev., 2011, vol. 255, p. 2933. doi 10.1016/j.ccr.2011.06.028

    Article  CAS  Google Scholar 

  23. Hemaprabha, E., J. Pharm. Sci. Innov., 2012, vol. 1, p. 22. doi 10.7897/2277-4572

    Google Scholar 

  24. Flores, A., Camarasa, M.J., Perez-Perez, M.J., San-Felix, A., Balzarini, J., and Quesada, E., Org. Biomol. Chem., 2014, vol. 12, p. 5278. doi 10.1039/C4OB00445K

    Article  CAS  Google Scholar 

  25. Al-Mughaid, H. and Grindley, T.B., J. Org. Chem., 2006, vol. 71, p. 1390. doi 10.1021/jo052045u

    Article  CAS  Google Scholar 

  26. Lindhorst, T.K., Dubber, M., Krallmann-Wenzel, U., and Ehlers, S., Eur. J. Org. Chem., 2000, vol. 11, p. 2027. doi 10.1002/1099-0690(200006)2000:11<2027::AID-EJOC2027>3.0.CO;2-L

    Article  Google Scholar 

  27. Ryazantsev, D.Y., Tsybulsky, D.A., Prokhorenko, I.A., Kvach, M.V., Martynenko, Y.V., Philipchenko, P.M., Shmanai, V.V., Korshun, V.A., and Zavriev, S.K., Anal. Bioanal. Chem., 2012, vol. 404, p. 59. doi 10.1007/s00216-012-6114-4

    Article  CAS  Google Scholar 

  28. Mollard, A. and Zharov, I., Inorg. Chem., 2006, vol. 45, p. 10172. doi 10.1021/ic061297q

    Article  CAS  Google Scholar 

  29. Zhu, J., Zhu, X., Kang, E.T., and Neoh, K.G., Polymer, 2007, vol. 48, p. 6992. doi 10.1016/j.polymer.2007.10.004

    Article  CAS  Google Scholar 

  30. Shchepinov, M.S., Udalova, I.A., Bridgman, A.J., and Southern, E.M., Nucl. Acids Res., 1997, vol. 25, p. 4447. doi 10.1093/nar/25.22.4447

    Article  CAS  Google Scholar 

  31. Avino, A., Ocampo, S.M., Perales, J.C., and Eritja, R., J. Nucl. Acids, 2011, p. 1. doi 10.4061/2011/586935

    Google Scholar 

  32. Ponomarenko, A.I., Brylev, V.A., Sapozhnikova, K.A., Ustinov, A.V., Prokhorenko, I.A., Zatsepin, T.S., and Korshun, V.A., Tetrahedron, 2016, vol. 12, p. 2386. doi 10.1016/j.tet.2016.03.051

    Article  Google Scholar 

  33. Damha, J.M., Giannaris, P.A., and Zabarylo, S.V., Nucl. Acids Res., 1990, vol. 18, p. 3813. doi 10.1093/nar/18.13.3813

    Article  CAS  Google Scholar 

  34. Deshmukh, R.R., Cole, D.L., and Sanghvi, Y.S., Methods in Enzymology, 2000, vol. 313, p. 203. doi 10.1016/S0076-6879(00)13014-9

    Article  CAS  Google Scholar 

  35. Schulte, M., Luhring, N., Keil, A., and Sanghvi, Y.S., Org. Proc. Res. Dev., 2005, vol. 9, p. 212. doi 10.1021/op050006e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Martynenko-Makaev.

Additional information

Original Russian Text © Yu.V. Martynenko-Makaev, V.V. Udodova, O.L. Sharko, V.V. Shmanai, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 3, pp. 425–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko-Makaev, Y.V., Udodova, V.V., Sharko, O.L. et al. Synthesis of Pentaerythritol-Based Branching Reagents for Modification of Proteins and Nucleic Acids by [2+3] Dipolar Cycloaddition Reaction. Russ J Gen Chem 88, 452–461 (2018). https://doi.org/10.1134/S1070363218030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218030118

Keywords

Navigation