Skip to main content
Log in

Direct asymmetric aldol reaction of acetophenones with aromatic aldehydes catalyzed by chiral Al/Zn heterobimetallic compounds

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Chiral Al/Zn heterobimetallic complexes are effective catalysts for the direct highly enantioselective aldol reaction of acetophenones with aromatic aldehydes. The Al site in the complex acts as a Lewis acid to activate aldehyde, whereas ethylzinc alkoxide plays a role of a Brønsted base to form a reactive zinc enolate with acetophenone. Distinct nature of two different metals contributes to the efficient direct asymmetric aldol reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcaide, B. and Almendros, P. Eur. J. Org. Chem., 2002, p. 1595. doi 10.1002/1099-0690(200205) 2002:10<1595::AID-EJOC1595>3.0.CO;2-M.

    Google Scholar 

  2. Notz, W., Tanaka, F., and Barbas, C.F., III, Acc. Chem. Res., 2004, vol. 37, p. 580. doi 10.1021/ar0300468.

    Article  CAS  Google Scholar 

  3. Mukherjee, S., Yang, J.W., Hoffmann, S., and List, B., Chem. Rev., 2007, vol. 107, p. 5471. doi 10.1021/cr0684016.

    Article  CAS  Google Scholar 

  4. Shibasaki, M., and Yoshikawa, N., Chem. Rev., 2002, vol. 102, p. 2187. doi 10.1021/cr010297z.

    Article  CAS  Google Scholar 

  5. Trost, B.M. and Brindle, C.S., Chem. Soc. Rev., 2010, vol. 39, p. 1600. doi 10.1039/B923537J.

    Article  CAS  Google Scholar 

  6. Palomo, C., Oiarbide, M., and García, J.M., Chem. Soc. Rev., 2004, vol. 33, p. 65. doi 10.1039/B202901D.

    Article  CAS  Google Scholar 

  7. Modern Aldol Reactions, Mahrwald, R., Ed., Weinheim Wiley-VCH, 2004.

  8. Casiraghi, G., Zanardi, F., Appendino, G., and Rassu, G., Chem. Rev., 2000, vol. 100, p. 1929. doi 10.1021/cr990247i.

    Article  CAS  Google Scholar 

  9. Singh, P. and Bhardwaj, A., J. Med. Chem., 2010, vol. 53, p. 3707. doi 10.1021/jm1001327.

    Article  CAS  Google Scholar 

  10. Johnson, J.S. and Evans, D.A., Acc. Chem. Res., 2000, vol. 33, p. 325. doi 10.1021/ar960062n.

    Article  CAS  Google Scholar 

  11. Mahrwald, R., Chem. Rev., 1999, vol. 99, p. 1095. doi 10.1021/cr980415r.

    Article  CAS  Google Scholar 

  12. Gröger, H., Vogl, E.M., and Shibasaki, M., Chem. Eur. J., 1998, vol. 4, p. 1137. doi 10.1002/(SICI)1521-3765(19980710)4:7<1137:: AID-CHEM1137>3.0.CO;2-Z.

    Article  Google Scholar 

  13. Nelson, S.G., Tetrahedron: Asymmetry, 1998, vol. 9, p. 357. doi 10.1016/S0957-4166(97)00634-4.

    Article  CAS  Google Scholar 

  14. Li, H.-J., Tian, H.-Y., Wu, Y.-C., Chen, Y.-J., Liu, L., Wang, D. and Li, C.-J., Adv. Synth. Catal., 2005, vol. 347, p. 1247. doi 10.1002/adsc.200505089.

    Article  CAS  Google Scholar 

  15. Mlynarski, J. and Jankowska, J., Adv. Synth. Catal., 2005, vol. 347, p. 521. doi 10.1002/adsc.200404314.

    Article  CAS  Google Scholar 

  16. Denmark, S.E. and Heemstra, J.R., Org. Lett., 2003, no. 5, p. 2303. doi 10.1021/ol034641l.

    Article  CAS  Google Scholar 

  17. Kiyooka, S., Takeshita, Y., Tanaka, Y., Higaki, T., and Wada, Y., Tetrahedron Lett., 2006, vol. 47, p. 4453. doi 10.1016/j.tetlet.2006.04.068.

    Article  CAS  Google Scholar 

  18. Li, H.-J., Tian, H.-Y., Chen, Y.-J., Wang, D., and Li, C.-J., Chem. Commun., 2002, p. 2994. doi 10.1039/B208411B.

    Google Scholar 

  19. Zhao, J.-F., Tan, B.-H., and Loh, T.-P., Chem. Sci., 2011, p. 349. doi 10.1039/C0SC00454E.

    Google Scholar 

  20. Yu, J., Zhao, X., Miao, Z., and Chen, R., Org. Biomol. Chem., 2011, p. 6721. doi 10.1039/C1OB05822C.

    Google Scholar 

  21. Yamada, Y.M.A., Yoshikawa, N., Sasai, H., and Shibasaki, M., Angew. Chem. Int. Ed., 1997, vol. 36, p. 1871. doi 10.1002/anie.199718711.

    Article  CAS  Google Scholar 

  22. Yoshikawa, N., Yamada, Y.M.A., Das, J., Sasai, H., and Shibasaki, M., J. Am. Chem. Soc., 1999, vol. 121, p. 4168. doi 10.1021/ja990031y.

    Article  CAS  Google Scholar 

  23. Yoshikawa, N., Kumagai, N., Mutsunaga, S., Moll, G., Ohshima, T., Suzuki, T., and Shibasaki, M., J. Am. Chem. Soc., 2001, vol. 123, p. 2466. doi 10.1021/ja015580u.

    Article  CAS  Google Scholar 

  24. Kumagai, N., Matsunaga, S., Yoshikawa, N., Ohshima, T., and Shibasaki, M., Org. Lett., 2001, p. 1539. doi 10.1021/ol015878p.

    Google Scholar 

  25. Trost, B.M. and Ito, H., J. Am. Chem. Soc., 2000, vol. 122, p. 12003. doi 10.1021/ja003033n.

    Article  CAS  Google Scholar 

  26. Trost, B.M., Ito, H., and Silcoff, E.R., J. Am. Chem. Soc., 2001, vol. 123, p. 3367. DOI:10.1021/ja003871h.

    Article  CAS  Google Scholar 

  27. Trost, B.M. and Yeh, V.S.C., Angew. Chem. Int. Ed., 2002, vol. 41, p. 861. doi 10.1002/1521-3773(20020301) 41:5<861::AID-ANIE861>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  28. Trost, B.M. and Mino, T., J. Am. Chem. Soc., 2003, vol. 125, p. 2410. doi 10.1021/ja029708z.

    Article  CAS  Google Scholar 

  29. Trost, B.M. and Terrell, L.R., J. Am. Chem. Soc., 2003, vol. 125, p. 338. doi 10.1021/ja028782e.

    Article  CAS  Google Scholar 

  30. Trost, B.M., Fettes, A., and Shireman, B.T., J. Am. Chem. Soc., 2004, vol. 126, p. 2660. doi 10.1021/ja038666r.

    Article  CAS  Google Scholar 

  31. Trost, B.M., Weiss, A.H., and von Wanggelin, A.J., J. Am. Chem. Soc., 2005, vol. 128, p. 8. doi 10.1021/ja054871q.

    Article  Google Scholar 

  32. Trost, B.M., Shin, S., and Sclafani, J.A., J. Am. Chem. Soc., 2005, vol. 127, p. 8602. doi 10.1021/ja051526s.

    Article  CAS  Google Scholar 

  33. Li, H., Da, C.-S., Xiao, Y.-H., Li, X., and Su, Y.N., J. Org. Chem., 2008, vol. 73, p. 7398. doi 10.1021/jo801182n.

    Article  CAS  Google Scholar 

  34. Shibasaki, M., Sasai, H., and Arai, T., Angew. Chem. Int. Ed., 1997, vol. 36, p. 1236. doi 10.1002/anie.199712361.

    Article  Google Scholar 

  35. Shibasaki, M. and Gröger, H., Top Organomet. Chem., 1999, p. 199.

    Google Scholar 

  36. Shibasaki, M. and Yoshikawa, N., Chem. Rev., 2002, vol. 102, p. 2187. doi 10.1021/cr010297z.

    Article  CAS  Google Scholar 

  37. Shibasaki, M., Kanai, M., Matsunaga, S., and Kumagai, N., Acc. Chem. Res., 2004, vol. 37, p. 580. doi 10.1021/ar0300468.

    Article  Google Scholar 

  38. Matsunaga, S. and Shibasaki, M., Bull. Chem. Soc. Japan, 2008, vol. 81, p. 60. doi 10.1246/bcsj.81.60.

    Article  CAS  Google Scholar 

  39. Mihara, H., Xu, Y., Sheperd, N.E., Matsunaga, S., and Shibasaki, M., J. Am. Chem. Soc., 2009, vol. 131, p. 8384. doi 10.1021/ja903158x.

    Article  CAS  Google Scholar 

  40. Handa, S., Gnanadesikan, V., Matsunaga, S., and Shibasaki, M., J. Am. Chem. Soc., 2010, vol. 132, p. 4925. doi 10.1021/ja100514y.

    Article  CAS  Google Scholar 

  41. Iwata, M., Yazaki, R., Chen, I.-H., Sureshkumar, D., Kumagai, N., and Shibasaki, M., J. Am. Chem. Soc., 2011, vol. 133, p. 5554. doi 10.1021/ja200250p.

    Article  CAS  Google Scholar 

  42. Donets, P.A. and Cramer, N., J. Am. Chem. Soc., 2013, vol. 135, p. 11772. doi 10.1021/ja406730t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Li.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, L., Xiao, YH. et al. Direct asymmetric aldol reaction of acetophenones with aromatic aldehydes catalyzed by chiral Al/Zn heterobimetallic compounds. Russ J Gen Chem 86, 1922–1930 (2016). https://doi.org/10.1134/S1070363216080247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216080247

Keywords

Navigation