Skip to main content
Log in

Influence of ZrO5 treatment temperature on the interaction with titanium tetrachloride

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The data on phase and chemical transformations of nanosized zirconium dioxide upon annealing at 25–1300°С are presented. The in situ interaction of titanium tetrachloride with nanosized zirconia annealed at 200–800°С has been studied. The revealed regularities of the change of titanium content and the Cl/Ti ratio in the chemisorbed groups have confirmed that TiCl4 predominantly reacts with zirconia treated at up to 400°С via the hydroxyl groups to yield the TiCl4–n fragments. In the case of zirconia treated at higher temperature, the interaction with TiCl4 involves the coordination-unsaturated Zr+ and Zr–O centers as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabanova, I.A., Popov, V.V., ans Sarkisov, P.D., Khimiya i tekhnologiya nanodispersnykh oksidov (Chemistry and Technology of Nano-Dispersed Oxides), Moscow Akademkniga, 2007.

    Google Scholar 

  2. Gusarov, V.V., Malkov, A.A., Malygin, A.A., and Suvorov, S.A., Zh. Prikl. Khim., 1994, vol. 67, no. 6, p. 935.

    CAS  Google Scholar 

  3. Gusarov, V.V., Ishutina, Zh.N., Malkov, A.A., Malygin, A.A., Rybal’chenko, O.V., and Shevchik, A.P., Inorg. Mater., 2000, vol. 36, no. 11, p. 1127. DOI: 10.1007/BF02758931.

    Article  CAS  Google Scholar 

  4. Ferguson, J.D., Yoder, A.R., Weimer, A.W., and George, S.M., Appl. Surface Sci., 2004, vol. 226, no. 4, p. 393. DOI: 10.1016/japsusc.2003.10.053.

    Article  CAS  Google Scholar 

  5. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg SPbGU, 1996.

    Google Scholar 

  6. Kol’tsov, S.I. and Aleskovskii, V.B., Zh. Fiz. Khim., 1968, vol. 42, no. 5, p. 1210.

    Google Scholar 

  7. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Zh. Prikl. Khim., 1988, vol. 61, no. 1, p. 29.

    CAS  Google Scholar 

  8. Petrova, L.I., Malkov, A.A., and Malygin, A.A., Zh. Prikl. Khim., 1986, vol. 59, no. 10, p. 2277.

    CAS  Google Scholar 

  9. Pozhidaeva, O.V., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Zh. Obshch. Khim., 1999, vol. 69, no. 8, p. 1265.

    Google Scholar 

  10. Kolen’ko Yu.V., Maksimov, V.D., Garshev, A.V., Mukhanov, V.A., and Oleinikov, N.N., Zh. Neorg. Khim., 2004, vol. 49, no. 8, p. 1237.

    Google Scholar 

  11. Al’myasheva, O.V., Vlasov, E.A., Khabenskii, V.B., and Gusarov, V.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 2, p. 217. DOI: 10.1134/S1070427209020104.

    Article  Google Scholar 

  12. Al’myasheva, O.V. and Gusarov, V.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 385. DOI: 10.1134/S1070363210030023.

    Article  Google Scholar 

  13. Al’myasheva, O.V., Ugolkova, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2008, vol. 81, no. 4, p. 609. DOI: 10.1134/S1070427208040071.

    Article  Google Scholar 

  14. Murav’eva, G.P., Fionov, A.V., Lunina, E.V., Tarakulova, A.O., Oleinikov, N.N., and Lunin, V.V., Doklady Chem., 2000, vol. 371, nos. 1–3, p. 39.

    Google Scholar 

  15. Oleinikov, N.N., Penin, I.V., Murav’eva, G.P., and Ketsko, V.A., Zh. Neorg. Khim., 2001, vol. 46, no. 9, p. 1413.

    CAS  Google Scholar 

  16. Polezhaev, Yu.M., Kortov, V.S., Mikshevich, M.V., and Gaprindashvili, A.I., Neorg. Mater., 1975, vol. 11, no. 3, p. 486.

    CAS  Google Scholar 

  17. Polezhaev, Yu.M., Afonin, Yu.D., Zhilyaev, V.A., Mikshevich, M.V., and Shalaginov, V.N., Neorg. Mater., 1977, vol. 13, no. 3, p. 476.

    CAS  Google Scholar 

  18. Bibik, E.E., Vvedenskaya, N.B., and Nechiporenko, A.P., Zh. Prikl. Khim., 1986, vol. 59, no. 11, p. 2531.

    CAS  Google Scholar 

  19. Al’myasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Nanosistemy: Fiz. Khim., Matem., 2010, vol. 1, no. 1, p. 26.

    Google Scholar 

  20. Whitney, E.D., J. Chem. Soc. Faraday Trans., 1965, vol. 61, p. 1991. DOI: 10.1039/TF9656101991.

    Article  CAS  Google Scholar 

  21. Malkov, A.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2004, vol. 77, no. 8, p. 1227. DOI: 10.1007/s11167-005-0004-x.

    Article  CAS  Google Scholar 

  22. Bulatov, M.I. and Kalinkin, I.P., Prakticheskoe rukovodstvo po fotokolorimetricheskim metodam analiza (Practical Guide on Methods of Analysis Photocolorimetry), Leningrad Khimiya, 1986.

    Google Scholar 

  23. Sharlo, G., Metody analiticheskoi khimii. Kolichestvennyi analiz neorganicheskikh soedinenii (Methods of Analytical Chemistry. The Quantitative Analysis of Inorganic Compounds), Moscow: Khimiya, 1969, part. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Malkov.

Additional information

Original Russian Text © A.A. Malkov, K.L. Vasileva, O.V. Al’myasheva, A.A. Malygin, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 5, pp. 736–742.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkov, A.A., Vasileva, K.L., Al’myasheva, O.V. et al. Influence of ZrO5 treatment temperature on the interaction with titanium tetrachloride. Russ J Gen Chem 86, 1001–1007 (2016). https://doi.org/10.1134/S1070363216050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216050029

Keywords

Navigation