Skip to main content
Log in

A spectroscopic method for simultaneous determination of protoporphyrin IX and hemoglobin in the nerve tissues at intraoperative diagnosis

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A combined method of spectroscopic analysis of biochemical and structural markers of tumor changes, including blood volume, hemoglobin oxygen saturation, protoporphyrin IX accumulation, and change in the scattering properties, was developed on the basis of the results of simulation modeling of light propagation in media with optical properties similar to those of biotissues. The method was verified on a series of optical phantoms and applied in a clinical setting for intraoperative navigation with the aim of demarcation of glioblastoma multiforme borders. It was shown that the method developed is superior in sensitivity and specificity to the method of video-fluorescent visualization with a Carl Zeiss OPMI Pentero microscope and can be used for demarcation of the borders of tumors exhibiting infiltrative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potapov, A.A. et al., Vopr. Neirokhir., 2013, vol. 77, no. 2, pp. 5–12.

    Google Scholar 

  2. http://omlc.ogi.edu/spectra/hemoglobin/index.html.

  3. Albani, J.R., Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies, Amsterdam: Elsevier, 2004.

    Google Scholar 

  4. Savelieva, T.A. et al., Kratk. Soobshch. Fiz., 2011, no. 11, pp. 30–38.

    Google Scholar 

  5. Wang, L. and Jacques, S.L., Monte Carlo Modeling of Light Transport in Multilayered Tissues in Standard C, Houston: University of Texas, M.D. Anderson Cancer Center, 1998.

    Google Scholar 

  6. Biomedical Photonics Handbook, Vo-Dinh, T., Ed., Boca Raton (Florida): CRC, 2003.

    Google Scholar 

  7. Teng, L. et al., Brit. J. Cancer, 2011, no. 104, pp. 798–807.

    Google Scholar 

  8. Ishihara, R. et al., Neurol. Med. Chir. (Tokyo), 2007, vol. 47, no. 2, pp. 53–57.

    Article  Google Scholar 

  9. Stummer, W. et al., J. Neurooncol., 2008, vol. 87, pp. 103–109.

    Article  CAS  Google Scholar 

  10. Gibbs-Strauss, S.L. et al., Med. Phys., 2009, vol. 36, pp. 974–983.

    Article  CAS  Google Scholar 

  11. Valdes, P.A. et al., Neuro-Oncology, 2011, vol. 13, no. 8, pp. 846–856.

    Article  CAS  Google Scholar 

  12. Brat, D.J., Conf. Proc. of Am. Soc. Neuroradiol.: Integration of Imaging Strategies in Neuroradiology, 2004, pp. 1–8.

    Google Scholar 

  13. Giese, A., J. Clin. Oncol., 2003, vol. 21, no. 8, pp. 1624–1636.

    Article  CAS  Google Scholar 

  14. Tonn, J.C. and Goldbrunner, R., Acta Neurochir. Suppl., 2003, vol. 88, pp. 163–167.

    CAS  Google Scholar 

  15. Brunberg, J.A. et al., Am. J. Neuroradiol., 1995, vol. 16, pp. 361–371.

    CAS  Google Scholar 

  16. Sinha, S. et al., Am. J. Neuroradiol., 2002, vol. 23, pp. 520–527.

    Google Scholar 

  17. Johansen-Berg, H. and Behrens, T.E.-G., Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy, Amsterdam: Academic, 2009, pp. 75–126.

    Google Scholar 

  18. Brady, S.T. et al., Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology, 8th ed., Amsterdam: Academic, 2011.

    Google Scholar 

  19. Takano, S. et al., Cancer Res., 1996, vol. 56, pp. 2185–2190.

    CAS  Google Scholar 

  20. Takahashi, J.A. et al., J. Neurosurg., 1992, vol. 76, pp. 792–798.

    Article  CAS  Google Scholar 

  21. Scatliff, J.H. et al., Am. J. Roentgenol. Radium Ther. Nucl. Med., 1969, vol. 105, no. 4, pp. 795–805.

    Article  CAS  Google Scholar 

  22. Weidner, N., J. Pathol., 1998, vol. 184, no. 2, pp. 119–122.

    Article  CAS  Google Scholar 

  23. Sydney, M. et al., Clin. Cancer Res., 2004, vol. 15, no. 10, pp. 8177.

    Google Scholar 

  24. Wenz, F. et al., Magn. Reson. Imag., 1996, vol. 14, no. 2, pp. 157–162.

    Article  CAS  Google Scholar 

  25. Fuss, M. et al., Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 48, no. 1, pp. 53–58.

    Article  CAS  Google Scholar 

  26. Aronen, H.J. et al., Radiology, 1994, vol. 191, no. 1, pp. 41–51.

    Article  CAS  Google Scholar 

  27. Asgari, S. et al., Acta Neurochir., 2003, vol. 145, no. 6, pp. 453–460.

    CAS  Google Scholar 

  28. Evans, S.M. et al., Clin. Cancer Res., 2004, vol. 10, pp. 8177–8184.

    Article  CAS  Google Scholar 

  29. Lally, B.E. et al., Cancer J., 2006, vol. 12, no. 6, pp. 461–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Savelieva.

Additional information

Original Russian Text © T.A. Savelieva, V.B. Loshchenov, S.A. Goryainov, L.V. Shishkina, A.A. Potapov, 2013, published in Rossiiskii Khimicheskii Zhurnal, 2013, Vol. 57, No. 5, pp. 39–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelieva, T.A., Loshchenov, V.B., Goryainov, S.A. et al. A spectroscopic method for simultaneous determination of protoporphyrin IX and hemoglobin in the nerve tissues at intraoperative diagnosis. Russ J Gen Chem 85, 1549–1557 (2015). https://doi.org/10.1134/S1070363215060341

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215060341

Keywords

Navigation