Skip to main content
Log in

Plasmachemical synthesis in low-temperature atmospheric pressure plasma

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Pesicular features of various types of electrical gaseous discharges used to generate and sustain low-temperature plasma at atmospheric pressure have been considered. Applications of dielectric barrier discharges (DBD), corona, radiofrequency (RF), and microwave (MW) discharges for the synthesis of different materials have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunhardt, E.E. and Luessen, L., Electrical Breakdown and Discharges in Gases. Part A: Fundamental Processes and Breakdown, New York: Plenum, 1981.

    Google Scholar 

  2. Nigham, W.L. and Wiegand, W.J., Phys. Rev., 1974, vol. A10, pp. 922–945.

    Article  Google Scholar 

  3. Velikhov, E.P., Pis’mennyi, V.D., and Rakhimov, A.T., Sov. Phys. Usp., 1977, vol. 20, pp. 586–602.

    Article  Google Scholar 

  4. Cernak, M., Hosokawa, T., and Inoshima, M., Appl. Phys. Lett., 1990, vol. 57, pp. 339–340.

    Article  CAS  Google Scholar 

  5. Kushner, M.J., IEEE Trans. Plasma Sci., 1991, vol. 19, no. 2, pp. 387–399.

    Article  CAS  Google Scholar 

  6. Botticher, W., Luck, H., Niesner, St., and Schwabedissen, A., Appl. Phys., 1994, vol. 76, no. 9, pp. 5036–5047.

    Article  Google Scholar 

  7. Kulikovsky, A.A., J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 431–435.

    Article  Google Scholar 

  8. Ul’yanov, K.N., Zh. Tekh. Fiz., 1973, vol. 43, no. 3, pp. 570–577.

    Google Scholar 

  9. Baranov, V.Yu. and Ul’yanov, K.N., Zh. Tekh. Fiz., 1969, vol. 39, no. 2, pp. 249–258.

    Google Scholar 

  10. Eletskii, A.V., Khim. Plazmy, 1982, no. 9, p. 151.

    Google Scholar 

  11. Eletskii, A.V. and Starostin, A.N., Fiz. Plazmy, 1976, vol. 2, pp. 838–842.

    CAS  Google Scholar 

  12. Bychkov, V.L. and Eletskii, A.V., Fiz. Plazmy., 1988, vol. 14, p. 1497.

    Google Scholar 

  13. Kovalev, A.S. and Persiantsev, I.G., Pis’ma Zh. Tekh. Fiz., 1980, no. 12, pp. 743–747.

    Google Scholar 

  14. Kanatenko, M.L., Pis’ma Zh. Tekh., 1983, vol. 9, no. 4, pp. 214–218.

    CAS  Google Scholar 

  15. Genkin, S.A., Korolev, Yu.D., Mesyats, G.A., Rabotkin, B.G., and Khuzeev, A.P., Teplofiz. Vys. Temp., 1982, vol. 20, pp. 1–5.

    CAS  Google Scholar 

  16. Genkii, S.A, Kozyrev, A.V, Korolev, Yu.D., et al., Zh. Tekh. Fiz., 1985, vol. 55, no. 6, pp. 1216–1218.

    Google Scholar 

  17. Bychkov, Yu.I., Genkin, S.A., Korolev, Yu.D., et al., Vestn. Vyssh. Uchebn. Zaved., Fizika, 1978, vol. 10, pp. 146–149.

    Google Scholar 

  18. Douglas-Hamilton, D.H. and Mani, S.A., J. Appl. Phys., 1974, vol. 45, pp. 4406–4416.

    Article  CAS  Google Scholar 

  19. Kostylev, A.A., Londer, Y.I., Terent’ev, A.P., and Ul’yanov, K.N., Sov. Phys. Tech. Phys., 1977, vol. 17, no. 2, pp. 193–200.

    Google Scholar 

  20. Hill, R.D., J. Appl. Phys., 1975, vol. 46, pp. 2910–2915.

    Article  Google Scholar 

  21. Eletskiy, A.V., Starostin, A.N., et al., Fiz. Plazmy, 1975, vol. 1, no. 4, pp. 684–690.

    Google Scholar 

  22. Golubovskii, Y.B. and Zonnenburg, R., Sov. Phys. Tech. Phys., 1980, vol. 25, pp. 1220–1222.

    Google Scholar 

  23. Akishev, Yu.S., Zakharchenko, A.I., Gorodnicheva, I.I., et al., Prikl. Mekh. Tekh. Fiz., 1981, no. 3, pp. 10–13.

    Google Scholar 

  24. Karlau, H.E. and Muller, K.G., IEEE Trans. Plasma Sci., 1986, vol. PS-14, pp. 603–608.

    Google Scholar 

  25. Novak, J.P. and Bartnikas, R., J. Appl. Phys., 1988, vol. 64, pp. 1767–1775.

    Article  CAS  Google Scholar 

  26. Osipov, A.I., Uvarov, A.B., Vinnichenko, H.A., and Roshchina (Sakharova), N.A., Nelin. Mir., 2005, nos. 1–2, pp. 40–47.

    Google Scholar 

  27. Napartovich, A.P., Plasmas Polym., 2001, vol. 6, pp. 1–14.

    Article  CAS  Google Scholar 

  28. Beaulieu, A.J., Appl. Phys. Lett., 1970, vol. 16, pp. 504–506.

    Article  CAS  Google Scholar 

  29. Roth, J.R., Industrial Plasma Engineering: Volume 1: Principles, Bristol: IOP, 1995.

    Book  Google Scholar 

  30. Decomps, Ph., Massines, F., and Mayoux, C., Acta Phys. Univ. Comen., 1994, p. 47.

    Google Scholar 

  31. Massines, F., Gadri, R.B., Descomps, Ph., Rabehi, A., Segur, P., and Mayoux, C., Proc. XXII Int. Conf. on Phenomena in Ionized Gases, Hoboken, USA, 1995, vol. 363, pp. 306–315.

    Article  Google Scholar 

  32. Trunec, D, Brablec, A., and Stastny, F., Contrib. Plasma Phys., 1998, vol. 38, pp. 435–445.

    Article  CAS  Google Scholar 

  33. Massines, F., Rabehi, A., Descomps, P., Gadri R.B., Segur, P., and Mayoux, C., J. Appl. Phys., 1998, vol. 83, pp. 2950–2957.

    Article  CAS  Google Scholar 

  34. Kunhardt, E.E., Becker, K., and Amorer, L., Proc. XII Int. Conf. on Gas Discharges and Their Applications, Greifswald, Germany, 1997, p. 87.

    Google Scholar 

  35. US Patent 2000/002225, publ. 13.01.2000.

  36. Ming-wei, L., Zheng, H., Xi-zhang, W., Qiang, W., and Yi, C., Thin Solid Films, 2003, vol. 435, pp. 116–119.

    Article  CAS  Google Scholar 

  37. Ming-wei, L., Zheng, H., Xi-zhang, W., Qiang, W., Yi, C., and Yi-Ling, T., Diamond Relat. Mater., 2004, vol. 13, pp. 111–115.

    Article  CAS  Google Scholar 

  38. Endo, M., Takeuchi, K., Iagrashi, S., Kobori, K., Shiraishi, M., and Kroto, H.W., J. Phys. Chem. Solids, 1993, vol. 22, no. 17, pp. 1213–1224.

    Google Scholar 

  39. Morrison, R.W. and Swail, C., Phys. Lett., 1972, vol. 40A, pp. 375–377.

    Article  Google Scholar 

  40. Hidson, D.J., Makios, V., and Morrison, R.W., Phys. Lett., 1972, vol. 40A, pp. 413–414.

    Article  Google Scholar 

  41. Tan, K.O., Makios, V., Morrison, R., and Tea, W.A., Phys. Lett., 1972, vol. 38A, pp. 225–226.

    Article  Google Scholar 

  42. Eckbreth, A.C. and Davis, J.W., IEEE J. Quant. Electron., 1972, vol. 8,issue 2, pp. 139–144.

    Article  CAS  Google Scholar 

  43. Fenstermacher, C.A., Nutter, M.J., Leland, W.T., and Boyer, K., Appl. Phys. Lett., 1972, vol. 20, pp. 56–60.

    Article  CAS  Google Scholar 

  44. Nakamura, K., Yukawa, N., and Mochizuki, T., Appl. Phys. Lett., 1986, vol. 49, pp. 1493–1495.

    Article  CAS  Google Scholar 

  45. Alexandrov, V.Y., Gurevich, D.B., Kulagina, L.V., Lebedev, M.S. and Podmoshenskii, I.V., Sov. Phys. Tech. Phys., 1975, vol. 20, pp. 62–67.

    Google Scholar 

  46. Apollonov, V.V., Mininkov, V.R., and Prokhorov, A.M., Sov. J. Quant. Electron., 1984, vol. 14, pp. 898–901.

    Article  Google Scholar 

  47. Slade, P.D. and Serafetinides, A., IEEE J. Quant. Electron., 1978, vol. QE-14, pp. 321–322.

    Article  Google Scholar 

  48. Gibson, A.F., Hall, T.A., and Hatch, C.B., J. Quant. Electron., 1977, vol. QE-13, pp. 801–803.

    Article  Google Scholar 

  49. Hill, A., Appl. Phys. Lett., 1971, vol. 18, pp. 194–197.

    Article  CAS  Google Scholar 

  50. Eckbreth, A.C. and Davis, J.W., Appl. Phys. Lett., 1972, vol. 21, pp. 25–27.

    Article  CAS  Google Scholar 

  51. Palmer, A.J., Appl. Phys. Lett., 1974, vol. 25, pp. 138–140.

    Article  CAS  Google Scholar 

  52. Levatter, J.I. and Lin, S.C., Appl. Phys. Lett., 1980, vol. 51, pp. 210–223.

    CAS  Google Scholar 

  53. Bondarenko, A.V., Lebedev, F.V., and Smakotin, M.M., Pis’ma Zh. Exp. Teor, Fiz., 1982, vol. 8, no. 11, pp. 648–653.

    CAS  Google Scholar 

  54. Gadri, R.B., IEEE Trans. Plasma Sci., 1999, vol. 27, no. 1, pp. 36–37.

    Article  CAS  Google Scholar 

  55. Kanzawa, S., Kogoma, M., Okazaki, S., and Moriwaki, T., Nuclear Inst. Methods Phys. Res., 1989, vol. B37, pp. 842–845.

    Article  Google Scholar 

  56. Yokoyama, T., Kogoma, M., Kanzawa S., Moriwaki, T., and Okazaki, S.J., J. Phys. D: Appl. Phys., 1990, vol. 23, pp. 374–377.

    Article  CAS  Google Scholar 

  57. Yokoyama, T., Kogoma, M., Moriwaki, T., and Okazaki, S.J., J. Phys. D: Appl. Phys., 1990, vol. 23, pp. 1125–1128.

    Article  CAS  Google Scholar 

  58. Okazaki, S. J., Kogoma, M., Uehara, M., and Kimura, Y., J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 899–892.

    Article  Google Scholar 

  59. Kogoma, M. and Okazaki, S.J., J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 1985–1987.

    Article  CAS  Google Scholar 

  60. Akishev, Yu.S., Deryugin, A.A., Kochetov, I.V., Napartovich, A.P., and Trushkin, N.L., J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 1630–1637.

    Article  CAS  Google Scholar 

  61. Akishev, Yu.S., Deryugin, A.A., Karal’nik, V.B., and Kochetov, I.V., et al., Plasma Phys. Rep., 1994, vol. 20, pp. 511–524.

    Google Scholar 

  62. Akishev, Yu.S., Deryugin, A.A., Elfin, N.N., Kochetov, I.V., et al., Plasma Phys. Rep., 1994, vol. 20, pp. 437–441.

    Google Scholar 

  63. Kogelschatz, U., IEEE Trans. Plasma Sci., 2002, vol. 30, no. 4, pp. 1400–1408.

    Article  CAS  Google Scholar 

  64. Eliasson, B. and Kogelschatz, U., IEEE Trans. Plasma Sci., 1991, vol. 19, pp. 309–322.

    Article  Google Scholar 

  65. Kogelschatz, U., Eliasson, B., and Egli, W., J. Phys. IV France, 1997, vol. 7, pp. C4-47–C4-66.

    Article  Google Scholar 

  66. Selwyn, G.S., Plasma Proc. Polym., 2007, vol. 4, pp. S487–S492.

    Article  Google Scholar 

  67. Schütze, A., Jeong, J.Y., Babayan, S.E., Park, J., et al., IEEE Trans. Plasma Sci., 1998, vol. 26, pp. 1685–1694.

    Article  Google Scholar 

  68. Jeong, J.Y., Babayan, S.E., Tu, V.J., Park, J., et al., Plasma Sources Sci. Technol., 1998, vol. 7, pp. 282–285.

    Article  CAS  Google Scholar 

  69. Babayan, S.E., Jeong, J.Y., Tu, V.J., and Park, J., Plasma Sources Sci. Technol., 1998, vol. 7, no. 3, pp. 286–288.

    Article  CAS  Google Scholar 

  70. Selwyn, G.S., Herrmann, H.W., Park, J., and Henins, I., Contrib. Plasma Phys., 2001, vol. 41, pp. 610–619.

    Article  CAS  Google Scholar 

  71. Park, J., Henins, I., Herrmann, H.W., Selwyn, G.S., et al., Appl. Phys. Lett., 2000, vol. 76, p. 228.

    Google Scholar 

  72. Park, J., Henins, I., Herrmann, H.W., and Selwyn, G.S., J. Appl. Phys., 2000, vol. 89, pp. 15–20.

    Article  Google Scholar 

  73. Park, J., Henins, I., Herrmann, H.W., and Selwyn, G.S., J. Appl. Phys., 2000, vol. 89, pp. 20–28.

    Article  Google Scholar 

  74. Laimer, J., Haslinger, S., Meissl, W., Hell, J., and Störi, H., Vacuum, 2005, vol. 79, pp. 209–214.

    Article  CAS  Google Scholar 

  75. Laimer, J. and Störi, H., Plasma Proc. Polym., 2006, vol. 3, pp. 573–586.

    Article  CAS  Google Scholar 

  76. Li, H-P., Sun, W-T., Wang, H-B.. Li, G., and Bao, C-Y., Plasma Chem. Plasma Proc., 2007, vol. 27, pp. 529–545.

    Article  CAS  Google Scholar 

  77. Moravej, M., Yang, X., Nowling, G.R., Chang, J.P., and Hicks, R.F., J. Appl. Phys., 2004, vol. 96, pp. 7011–7018.

    Article  CAS  Google Scholar 

  78. Yang, X., Moravej, M., Nowling, G.R., Chang, J.P., and Hicks, R.F., IEEE Trans. Plasma Sci., 2005, vol. 33, pp. 314–320.

    Article  Google Scholar 

  79. http://www.surfxtechnologies.com (June 1, 2012).

  80. Beenakker, C.I.M., Spectrochim. Acta, 1976, vol. 31B, pp. 483–486.

    Article  CAS  Google Scholar 

  81. Michlewicz, K.G., Urh, J.J., and Carnahan, J.W., Spectrochim. Acta., 1985, vol. 40B, pp. 493–499.

    Article  CAS  Google Scholar 

  82. Deutsch, R.D. and Hieftje, G.M., Appl. Spectrosc., 1985, vol. 39, pp. 214–222.

    Article  CAS  Google Scholar 

  83. Faires, L.M., Bieniewski, T.M., Apel, Ch.T., and Niemchzk, T.M., Appl. Spectrosc., 1985, vol. 39, pp. 5–9.

    Article  CAS  Google Scholar 

  84. Haas, D.L. and Jamerson, J.D., Spectrochim. Acta, 1987, vol. 42B, pp. 299–307.

    Article  CAS  Google Scholar 

  85. Sofer, I., Zhu, J., Lee, H., Antos, W., and Lubman, D.M., Appl. Spectrosc., 1990, vol. 44, pp. 1391–1398.

    Article  CAS  Google Scholar 

  86. Arkhipenko, V.I., Zgirovskii, S.M., Simonchik, L.V., Smetanin, E.A., and Solov’yanchik, D.A., Appl. Spectrosc., 1994, vol. 61, pp. 680–683.

    Article  Google Scholar 

  87. Alexandrov, S.E. and Hitchman, M.L., Chem. Vap. Dep., 2005, vol. 11, pp. 457–468.

    Article  CAS  Google Scholar 

  88. Roth, J.R., Industrial Plasma Engineering: Applications to Nonthermal Plasma Processing, Institute of Physics Publishing, 2001, vol. 2.

  89. Kogelschatz, U., Pure Appl. Chem., 1990, vol. 62, pp. 1667–1674.

    Article  CAS  Google Scholar 

  90. Kogelschatz, U., Plasma Phys. Control. Fusion, 2004, vol. 46, pp. B63–B75.

    Article  CAS  Google Scholar 

  91. Nozaki, T. and Okazaki, K., Plasma Proc. Polym., 2008, vol. 5, pp. 300–321.

    Article  CAS  Google Scholar 

  92. Nozaki, T., Ohnishi, K., Okazaki, K., and Kortshagen, U., Carbon, 2007, vol. 45, pp. 364–374.

    Article  CAS  Google Scholar 

  93. Kyung, S., Lee, Yo., Kim, Ch., Lee, J., and Yeom, G., Thin Solid Films, 2006, vols. 506–507, pp. 268–273.

    Article  CAS  Google Scholar 

  94. Kim, Ch., Lee, Yo., Kyung, S., and Yeom, G., J. Korean Phys. Soc., 2005, vol. 46, no. 4, pp. 918–921.

    CAS  Google Scholar 

  95. Lei, H., Tang, Y., Li, J., Luo, J., and Zhang, J., Appl. Phys. Lett., 2009, vol. 91, pp. 113119–1-3.

    Article  CAS  Google Scholar 

  96. Prat, R., Koh, Y.J., Babukutty, Y., Kogoma, M., et al., Polymer, 2000, vol. 41, pp. 7355–7360.

    Article  CAS  Google Scholar 

  97. Goossens, O., Dekempeneer, E., Vangeneugden, D., Van de Leest, R., and Leys, C., Surf. Coat. Tech., 2001, vols. 142–144, pp. 474–481.

    Article  Google Scholar 

  98. Donohoe, K.G. and Wydenven, T., Abstracts of Papers, 4th Int. Symp. on Plasma Chemistry (ISPC-4), Zurich, Switzerland, 1979, p. 765. http://134.147.160.41/ispcdocs/ispc4/DB2.html

    Google Scholar 

  99. Reitz, U., Salge, J.G.H., and Schwarz, R., Surf. Coat. Technol., 1993, vol. 59, pp. 144–147.

    Article  CAS  Google Scholar 

  100. O’Neill, L., O’Hare, L.A., Leadley, S.R., and Goodwin, A.J., Chem. Vap. Dep., 2005, vol. 11, pp. 477–479.

    Article  CAS  Google Scholar 

  101. Paulussen, S., Rego, R., Goossens, O., Vangeneugden, D., and Rose, K., Phys. D: Appl. Phys., 2005, vol. 38, p. 568.

    Article  CAS  Google Scholar 

  102. Davis, M.J., Tsanos, M., Lewis, J., Sheel, D.W., and Pemble, M.E., Electrochemistry, vol. 203, p. 2173.

  103. Rymuza, Z., Misiak, M., Rzanek-Boroch, Z., et al., Thin Solid Films, 2004, vol. 466, pp. 158–166.

    Article  CAS  Google Scholar 

  104. Li, M.W., Hu, Z., Wang, X., Wu, Q., and Chen, Y., J. Mater. Sci. Lett., 2003, vol. 22, pp. 1223–1224.

    Article  CAS  Google Scholar 

  105. Marafee, A., Liu, Ch., Xu, G., Mallinson, R., and Lobban, L., Ind. Eng. Chem. Res., 1997, vol. 36, pp. 632–637.

    Article  CAS  Google Scholar 

  106. Li, M., Hu, Z., Wang, X., Wu, Q., Lu, Y., and Chen, Y., Chinese Sci. Bull., 2003, vol. 48, no. 6, pp. 534–537.

    Article  CAS  Google Scholar 

  107. Thyen, R., Weber, A., and Klages, C.-P., Surf. Coat. Tech., 1997, vol. 97, pp. 426–434.

    Article  CAS  Google Scholar 

  108. Kanazawa, S., Kogoma, M., Moriwaki, T., and Okazaki, S., J. Phys. D, 1988, vol. 21, pp. 838–843.

    Article  CAS  Google Scholar 

  109. Mesko, M., Vretena, V., Kotrusz, P., Hulman, M., et al., Phys. Status Solidi., 2012, vol. B249, no. 12, pp. 2625–2628.

    Article  CAS  Google Scholar 

  110. Yu, K., Bo, Z., Mao, S., Lu, G., et al., Nanoscale Res. Lett., 2011, vol. 6, pp. 202–211.

    Article  CAS  Google Scholar 

  111. Nozaki, T., Goto, T., Okazaki, K., and Ohnishi, K., J. Appl. Phys., 2006, vol. 99, p. 024310.

    Article  CAS  Google Scholar 

  112. Ladwig, A.M., Koch, R.D., Wenski, E.G., and Hicks, R.F., Diamond Relat. Mater., 2009, vol. 18, no. 9, pp. 1129–1133.

    Article  CAS  Google Scholar 

  113. Barankin, M.D., Gonzalez, E., Ladwig, A.M., and Hicks, R.F., Sol. Energy Mater. Sol. Cells, 2007, vol. 91, pp. 924–930.

    Article  CAS  Google Scholar 

  114. Nowling, G.R., Babayan, S.E., Jankovic, V., and Hick, R.F., Plasma Sources Sci. Technol., 2002, vol. 11, pp. 97–103.

    Article  CAS  Google Scholar 

  115. Nowling, G.R., Babayan, S.E., Yajima, M., Moravej, M., et al., Plasma Sources Sci. Technol., 2005, vol. 14, pp. 477–484.

    Article  CAS  Google Scholar 

  116. Moravej, M., Babayan, S.E., Nowling, G.R., Yang, X., and Hick, R., Plasma Sources Sci. Technol., 2004, vol. 13, pp. 8–14.

    Article  CAS  Google Scholar 

  117. Alexandrov, S.E., Kretusheva, I.V., Mishin, M.V., and Yasenovets, G.M., J. Nanosci. Nanotechnol., 2011, vol. 11, pp. 7969–7973.

    Article  CAS  Google Scholar 

  118. Mishin, M.V., Alexandrov, S.E., Kretusheva, I.V., and Boricheva, I.K., Nauch. Tekh. Vedom. Sankt-Peterb. Gos. Pedagog. Univ., Nauka Obraz., 2012, no. 4, issue 159, pp. 105–110.

    Google Scholar 

  119. Alexandrov, S.E., Kretusheva, I.V., and Mishin, M.V., ECS Trans., 2009, vol. 25, no. 8, pp. 943–951.

    CAS  Google Scholar 

  120. Kirihata, Y., Nomura, T., Ohmi, H., Kakiuchi, H., and Yasutake, K., Surf. Interface Anal., 2008, vol. 40, pp. 984–987.

    Article  CAS  Google Scholar 

  121. Mori, Y., Yoshii, K., Yasutake, K., Kakiuchi, H., et al., Thin Solid Films, 2003, vol. 444, pp. 138–145.

    Article  CAS  Google Scholar 

  122. Barankin, M.D., Creyghton, Y., and Schmidt-Ott, A., J. Nanoparticle Res., 2006, vol. 8, pp. 511–517.

    Article  CAS  Google Scholar 

  123. Inomata, K., Ha, H., Chaudhary, K.A., and Koinuma, H., Appl. Phys. Lett., 1994, vol. 64, pp. 46–49.

    Article  CAS  Google Scholar 

  124. Mori, T., Tanaka, K., Inomata, T., Takeda, A., and Kogoma, M., Thin Solid Films, 1998, vol. 316, pp. 89–92.

    Article  CAS  Google Scholar 

  125. Ogawa, S., Takeda, A., Oguchi, M., Tanaka, K., et at., Thin Solid Films., 2001, vol. 386, pp. 213–216.

    Article  CAS  Google Scholar 

  126. Mori, Y., Yoshii, K., Yasutake K., Kakiuchi, H., et al., Thin Solid Films., 2003, vol. 444, pp. 138–145.

    Article  CAS  Google Scholar 

  127. Brown, M., Hayes, P., and Prangnell, Ph., Composites, 2002, vol. A33, pp. 1403–1408.

    Article  Google Scholar 

  128. Cardoso, R.P., Belmonte, T., Henrion, G., Gries, T., and Tixhon, E., J. Appl. Phys., 2010, vol. 107, p. 024909–1-7.

    Article  CAS  Google Scholar 

  129. Sugiyama, K., Kiyokawa, K., Matsuoka, H., Itou, A., et al., Thin Solid Films, 1998, vol. 316, pp. 117–122.

    Article  CAS  Google Scholar 

  130. Kiyokawa, K., Itou, A., Matsuoka, H., Tomimatsu, M., and Sugiyama, K., Thin Solid Films., 1999, vol. 345, pp. 119–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mishin.

Additional information

Original Russian Text © M.V. Mishin, V.S. Protopopova, S.E. Alexandrov, 2013, published in Rossiiskii Khimicheskii Zhurnal, 2013, Vol. 57, Nos. 3–4, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishin, M.V., Protopopova, V.S. & Alexandrov, S.E. Plasmachemical synthesis in low-temperature atmospheric pressure plasma. Russ J Gen Chem 85, 1209–1221 (2015). https://doi.org/10.1134/S1070363215050394

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215050394

Keywords

Navigation