Skip to main content
Log in

Thermo-oxidative degradation of styryl derivatives of pyridine-N-oxides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Kinetic parameters of thermo-oxidative degradation of various derivatives of pyridine-N-oxide have been calculated. Thermo-oxidative degradation is a multi-stage process. 4-Substituted pyridine-N-oxides are more thermally stable than the 2-substituted isomers. Stability of 4-substituted pyridine-N-oxides towards thermo-oxidation is enhanced in the presence of electron-donating ability of the substituent. In the case of 4-styrylpyridine-N-oxide, the rate-limiting stage of thermo-oxidation is a chemical reaction; for other studied compounds, the limiting stage is free nucleation and further nuclei growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, J.K. and Hurng, D.C., Food Chem. Toxicol., 1985, vol. 23, no. 6, p. 579.

    Article  CAS  Google Scholar 

  2. Markowitz, J.S. and Patrick, K.S., J. Chromatogr. (B), 1995, vol. 668, no. 1, p. 171. DOI: 10.1016/0378-4347(95)00060-V.

    Article  CAS  Google Scholar 

  3. Cashman, J.R., Park, S.B., Yang, Z.C., Wrighton, S.A., Jacob, III, P., and Benowitz, N.L., Chem. Res. Toxicol., 1992, vol. 5, no. 5, p. 639. DOI: 10.1021/tx00029a008.

    Article  CAS  Google Scholar 

  4. Konkin, A., Wendler, F., Meister, F., Roth, H.K., Aganov, A., and Ambacher, O., Spectrochim. Acta (A), 2008, vol. 69, no. 3, p. 1053. DOI: 10.1016/j.saa.2007.06.026.

    Article  CAS  Google Scholar 

  5. Golova, L.K., Borodina, O.E., Belousov, Yu.Ya., Andreeva, I.N., Yablochko, L.P., and Papkov, S.P., Fibre Chem., 1987, vol. 19, no. 3, p. 204. DOI: 10.1007/BF00543852.

    Article  Google Scholar 

  6. Saenz, L.R., Carreto-Vazquez, V.H., Rogers, W.J., Papadaki, M., and Mannan, M.S., Catal. Commun., 2011, vol. 12, no. 14, p. 1370. DOI: 10.1016/j.catcom.2011.03.036.

    Article  CAS  Google Scholar 

  7. Soykan, C., Coskun, R., and Delibas, A., Thermochim. Acta, 2007, vol. 456, no. 12, p. 152. DOI: 10.1016/j.tca.2007.02.011.

    Article  CAS  Google Scholar 

  8. Alker, D., Mageswaran, S., Ollis, W.D., and Hooshang Shahriari-Zavareh, J. Chem. Soc., Perkin Trans. 1, 1990, p. 1631. DOI: 10.1039/P19900001631.

    Google Scholar 

  9. Sammes, P.G., Serra-Errante, G., and Tinker, A.C., J. Chem. Soc., Perkin Trans. 1, 1979, p. 1736. DOI: 10.1039/P19790001736.

    Google Scholar 

  10. Jones, I.W., Kerr, D.A., and Wilson, D.A., J. Chem. Soc. (C), 1971, p. 2595. DOI: 10.1039/J39710002595.

    Google Scholar 

  11. Mackenzie, J., Plant Oper. Prog., 1991, vol. 10, no. 3, p. 164. DOI: 10.1002/prsb.720100310.

    Article  CAS  Google Scholar 

  12. Papadaki, M., Marques-Domingo, E., Gao, J., and Mahmud, T., J. Loss Prevent. Proc. Ind., 2005, vol. 18, nos. 4–6, p. 384. DOI: 10.1016/j.jlp.2005.06.024.

    Article  Google Scholar 

  13. Gubarev, Yu.A., Lebedeva, N.Sh., V’yugin, A.I., Andreev, V.P., and Nizhnik, Ya.P., Russ. J. Gen. Chem., 2007, vol. 77, no. 6, p. 1093. DOI: 10.1134/S1070363207060254.

    Article  CAS  Google Scholar 

  14. Suvorov, A.V., Termodinamicheskaya khimiya paroobraznogo sostoyaniya (Thermodynamic Chemistry of Vapor State), Leningrad: Khimiya, 1970.

    Google Scholar 

  15. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC Press; Taylor and Francis, 2009.

    Google Scholar 

  16. Palm, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Fundamentals of the Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1967.

    Google Scholar 

  17. Samtani, M., Dollimore, D., and Alexander, K.S., Thermochim. Acta, 2002, vol. 392, p. 135. DOI: 10.1016/S0040-6031(02)00094-1.

    Article  Google Scholar 

  18. Ochiai, E., J. Org. Chem., 1953, vol. 18, p. 534. DOI: 10.1021/jo01133a010.

    Article  CAS  Google Scholar 

  19. Svoistva organicheskikh soedinenii. Spravochnik (Properties of Organic Compounds. Handbook), Potekhin, A.A., Ed., Leningrad: Khimiya, 1984.

    Google Scholar 

  20. Pentimalli, L., Gazz. Chim. Ital., 1963, vol. 93, p. 1093.

    Google Scholar 

  21. Lebedeva, N.Sh., Yakubov, S.P., Kinchin, A.N., and V’yugin, A.I., Russ. J. Phys. Chem. A., 2005, vol. 79, no. 5, p. 827.

    CAS  Google Scholar 

  22. Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, p. 68.

    Article  CAS  Google Scholar 

  23. Zatsepin, A.F. and Fotiev, A.A., Zh. Neorg. Khim., 1973, vol. 18, no. 11, p. 2883.

    CAS  Google Scholar 

  24. Andreev, V.P., Sobolev, P.S., Zaitsev, D.O., and Il’yukhin, A.B., Russ. J. Gen. Chem., 2014, vol. 84, no. 1, p. 155. DOI: 10.1134/S1070363214010186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Gubarev.

Additional information

Original Russian Text © S.N. Golubev, N.Sh. Lebedeva, Yu.A. Gubarev, A.I. V’yugin, V.P. Andreev, 2014, published in Zhurnal Obshchei Khimii, 2014, Vol. 84, No. 11, pp. 1809–1816.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, S.N., Lebedeva, N.S., Gubarev, Y.A. et al. Thermo-oxidative degradation of styryl derivatives of pyridine-N-oxides. Russ J Gen Chem 84, 2107–2113 (2014). https://doi.org/10.1134/S1070363214110115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363214110115

Keywords

Navigation