Skip to main content
Log in

(4-Fluorobenzyl)triphenylphosphonium Hexachlorozirconate [Ph3PCH2C6H4F-4][ZrCl6]: Synthesis and Structure

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

(4-Fluorobenzyl)triphenylphosphonium hexachlorozirconate [Ph3PCH2C6H4F‑4][ZrCl6] (I) is synthesized by the reaction of (4‑fluorobenzyl)triphenylphosphonium chloride with zirconium tetrachloride in an acetonitrile solution. The structure of the compound is characterized by IR spectroscopy, 1Н, 13С{1Н}, and 19F{1Н} NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction (XRD). According to the XRD data, the crystals of complex I (CIF file CCDC no. 2063132) consist of tetrahedral (4‑fluorobenzyl)triphenylphosphonium cations (СРС 99.44(13)°−114.94(12)°, P−C 1.706(2)−1.935(3) Å) of two types and octahedral anions [ZrCl6]2– (trans-ClZrCl angles 177.35(3)°−178.62(3)°, distances Zr−Cl 2.4308(9)–2.5350(11) Å). The structure of complex I is formed due to weak hydrogen bonds between the cations and anions. The IR spectrum of complex I exhibits an intense band of stretching vibrations of the F−CAr bond at 997 cm−1, a band of vibrations of the P−СAr bonds at 1439 cm−1, and bending and stretching C−H vibration bands at 743 and 3059, 2912 cm−1. The doublet due to the long-range interaction on the fluorine atom (J = 8.8 Hz) is the characteristic signal in the 31Р NMR spectrum of complex I. All signals of the carbon atoms in the 13С NMR spectrum are observed as doublets and doublet-doublets due to the direct and long-range interactions with the fluorine and phosphorus atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Dzhemilev, U.M., Vostrikova, O.S., and Ibragimov, A.G., Russ. Chem. Rev., 1986, vol. 55, no. 2, p. 66. https://doi.org/10.1070/RC1986v055n02ABEH003172

    Article  Google Scholar 

  2. Schwartz, J. and Labinger, J.A., Angew. Chem., Int. Ed., 1976, vol. 15, p. 333. https://doi.org/10.1002/anie.197603331

    Article  Google Scholar 

  3. Schwartz, J., Pure Appl. Chem., 1980, vol. 52, no. 3, p. 733. https://doi.org/10.1351/pac198052030733

    Article  CAS  Google Scholar 

  4. Rogers, J.S., Bazan, G.C., and Sperry, C.K., J. Am. Chem. Soc., 1997, vol. 119, no. 39, p. 9305. https://doi.org/10.1021/ja971976n

    Article  CAS  Google Scholar 

  5. Wang, K.-T., Wang, Y.-X., Wang, B., et al., Dalton Trans., 2016, vol. 45, no. 25, p. 10308. https://doi.org/10.1039/C6DT01391K

    Article  CAS  PubMed  Google Scholar 

  6. Yu, S.-M., Tritschler, U., Göttker-Schnetmann, I., and Mecking, S., Dalton Trans., 2010, vol. 39, no. 19, p. 4612. https://doi.org/10.1039/B916289E

    Article  CAS  PubMed  Google Scholar 

  7. Fraser, D.A.X., Turner, Z.R., Buffet, J.-C., and O’Hare, D., Organometallics, 2016, vol. 35, no. 16, p. 2664. https://doi.org/10.1021/acs.organomet.6b00417

    Article  CAS  Google Scholar 

  8. Nakata, N., Toda, T., Saito, Y., et al., Polymers, 2016, vol. 8, no. 2, p. 31. https://doi.org/10.3390/polym8020031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theaker, G.W., Morton, C., and Scott, P., Macromolecules, 2011, vol. 44, no. 6, p. 1393. https://doi.org/10.1021/ma102835p

    Article  CAS  Google Scholar 

  10. Holtrichter-Rößmann, T., Häger, I., and Daniliuc, C.-G., Organometallics, 2016, vol. 35, no. 11, p. 1906. https://doi.org/10.1021/acs.organomet.6b00240

    Article  CAS  Google Scholar 

  11. Cuenca, T., Flores, J.C., and Royo, P., J. Organomet. Chem., 1993, vol. 462, nos. 1–2, p. 191. https://doi.org/10.1016/0022-328X(93)83357-2

    Article  CAS  Google Scholar 

  12. Xu, X., Kehr, G., Daniliuc, C.G., and Erker, G., J. Am. Chem. Soc., 2015, vol. 137, no. 13, p. 4550. https://doi.org/10.1021/jacs.5b01623

    Article  CAS  PubMed  Google Scholar 

  13. Blay, G., Fernández, I., Pedro, J.R., and Vila, C., Org. Lett., 2007, vol. 9, no. 13, p. 2601. https://doi.org/10.1021/ol0710820

    Article  CAS  PubMed  Google Scholar 

  14. Blay, G., Fernández, I., Monleón, A., et al., Org. Lett., 2009, vol. 11, no. 2, p. 441. https://doi.org/10.1021/ol802509m

    Article  CAS  PubMed  Google Scholar 

  15. Mo, L.-P. and Zhang, Z.-H., Curr. Org. Chem., 2011, vol. 15, no. 2, p. 3800. https://doi.org/10.2174/138527211797884520

    Article  CAS  Google Scholar 

  16. Hartmann, E., Dehnicke, K., and Fenske, D., Z. Naturforsch., B, 1989, vol. 44, no. 10, p. 1515. https://doi.org/10.1515/znb-1989-1001

    Article  Google Scholar 

  17. Chen, L. and Cotton, F.A., Inorg. Chem., 1996, vol. 35, no. 25, p. 7364. https://doi.org/10.1021/ic960454q

    Article  CAS  PubMed  Google Scholar 

  18. Chen, L., Cotton, F.A., and Wojtczak, W.A., Inorg. Chem., 1997, vol. 36, no. 18, p. 4047. https://doi.org/10.1021/ic960173i

    Article  CAS  Google Scholar 

  19. Minasian, S.G., Boland, K.S., and Feller, R.K., Inorg. Chem., 2012, vol. 51, no. 10, p. 5728. https://doi.org/10.1021/ic300179d

    Article  CAS  PubMed  Google Scholar 

  20. Gauch, F. and Strahle, J., Z. Anorg. Allg. Chem., 2000, vol. 626, no. 5, p. 1153. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5<1153::AID-ZAAC1153>3.0.CO;2-0

    Article  CAS  Google Scholar 

  21. Sharutin, V.V., Sharutina, O.K., and Lobanova, E.V., Russ. J. Inorg. Chem., 2018, vol. 63, no. 12, p. 1558. https://doi.org/10.1134/S0036023618120197

    Article  CAS  Google Scholar 

  22. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., et al., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2019, vol. 62, no. 6, p. 36.

    Article  CAS  Google Scholar 

  23. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., and El’tsov, O.S., Russ. Chem. Bull., 2019, vol. 68, no. 1, p. 24. https://doi.org/10.1007/s11172-019-2411-9

    Article  CAS  Google Scholar 

  24. Andreev, P.V., Lobanova, E.V., and Drozhilkin, P.D., Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya Khimiya, 2019, vol. 11, no. 4, p. 26.https://doi.org/10.14529/chem190403

  25. SMART and SAINT-Plus: Data Collection and Processing Software for the SMART System, Versions 5.0, Madison: Bruker AXS Inc., 1998.

  26. SHELXTL/PC: An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Versions 5.10, Madison: Bruker AXS Inc., 1998.

  27. Dolomanov, O.V., Bourhis, L.J., and Gildea, R.J., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  28. Prech, E., Bul’mann, F., and Affolter, K., Inorg. Chem., 1991, vol. 36, no. 12, p. 3015.

    Google Scholar 

  29. Batcanov, S.S., J. Inorg. Chem., 1991, vol. 36, no. 12, p. 3015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rybakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K., Rybakova, A.V. et al. (4-Fluorobenzyl)triphenylphosphonium Hexachlorozirconate [Ph3PCH2C6H4F-4][ZrCl6]: Synthesis and Structure. Russ J Coord Chem 49, 189–193 (2023). https://doi.org/10.1134/S1070328423700380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700380

Keywords:

Navigation