Skip to main content
Log in

Ligand Metathesis in Nickel(II) Complexation with closo-Decaborate Anion

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Nickel(II) complexation with the closo-decaborate anion in water and acetonitrile is studied. Complexes [Ni(solv)6][B10H10] (solv = H2O (I) or CH3CN (II)) are isolated. The complexes are characterized by elemental analysis and IR spectroscopy. Complex [Ni(CH3CN)5(H2O)]0.75[Ni(CH3CN)4(H2O)2]0.25[B10H10]·0.5H2O (III) is isolated from an acetonitrile–water system. The structure of complex III is solved by X-ray diffraction (XRD) (CIF file CCDС no. 2224702). A mechanism of ligand metathesis in the complexation of nickel(II) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Butterworth-Heinemann, 1997.

    Google Scholar 

  2. Boron Science: New Technologies and Applications, Hosmane, N.S., Ed., CRC, 2012.

    Google Scholar 

  3. Boron-Based Compounds: Potential and Emerging Applications in Medicine, Hey-Hawkins, E. and Viñas Teixidor, C., Eds., New York: Wiley, 2018. https://doi.org/10.1002/9781119275602

  4. Sivaev, I.B., Russ. J. Inorg. Chem., 2020, vol. 65, p. 1854. https://doi.org/10.1134/S0036023620120165

    Article  CAS  Google Scholar 

  5. King, R.B., Chem. Rev., 2001, vol. 101, p. 1119. https://doi.org/10.1021/cr000442t

    Article  CAS  PubMed  Google Scholar 

  6. Chen, Z. and King, R.B., Chem. Rev., 2005, vol. 105, p. 3613. https://doi.org/10.1021/cr0300892

    Article  CAS  PubMed  Google Scholar 

  7. Ren, L., Han, Y., Hou, X., and Wu, J., Chem., 2021, vol. 7, p. 3442. https://doi.org/10.1016/j.chempr.2021.11.003

    Article  CAS  Google Scholar 

  8. Klyukin, I.N., Vlasova, Yu.S., Novikov, A.S., et al., Symmetry, 2021, vol. 13, p. 464. https://doi.org/10.3390/sym13030464

    Article  CAS  Google Scholar 

  9. Núñez, R., Romero, I., Teixidor, F., and Viñas, C., Chem. Soc. Rev., 2016, vol. 45, p. 5147. https://doi.org/10.1039/C6CS00159A

    Article  PubMed  Google Scholar 

  10. Knapp, C., in Comprehensive Inorganic Chemistry II, Reedijk, J. and Poeppelmeier, K., Eds., Elsevier, 2013, р. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X

  11. Plesek, J., Chem. Rev., 1992, vol. 92, p. 269.

    Article  CAS  Google Scholar 

  12. Teixidor, F., Vinas, C., Demonceau, A., and Núñez, R., Pure Appl. Chem., 2003, vol. 75, p. 1305.

    Article  CAS  Google Scholar 

  13. Goswami, L.N., Ma, L., Chakravarty, Sh., et al., Inorg. Chem., 2013, vol. 52, p. 1694.

    Article  CAS  PubMed  Google Scholar 

  14. Sivaev, I.B., Bregadze, V.I., and Kuznetsov, N.T., Russ. Chem. Bull., 2002, vol. 51, p. 1362.

    Article  CAS  Google Scholar 

  15. Avdeeva, V.V., Garaev, T.M., Malinina, E.A., et al., Russ. J. Inorg. Chem., 2022, vol. 67, p. 28. https://doi.org/10.1134/S0036023622010028

    Article  CAS  Google Scholar 

  16. Sivaev, I.B. and Bregadze, V.I., Eur. J. Inorg. Chem., 2009, p. 1433.

  17. Sivaev, I.B., Prikaznov, A.V., and Naoufal, D., Collect. Czech. Chem. Commun., 2010, vol. 75, p. 1149. https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  18. Zhao, X., Yang, Z., Chen, H., et al., Coord. Chem. Rev., 2021, vol. 444, p. 214042. https://doi.org/10.1016/j.ccr.2021.214042

    Article  CAS  Google Scholar 

  19. Sivaev, I.B., Bregadze, V.I., and Sjöberg, S., Collect. Czech. Chem. Commun., 2002, vol. 67, p. 679. https://doi.org/10.1135/cccc20020679

    Article  CAS  Google Scholar 

  20. Matveev, E.Y., Avdeeva, V.V., Zhizhin, K.Y., et al., Inorganics, 2022, vol. 10, p. 238. https://doi.org/10.3390/inorganics10120238

    Article  CAS  Google Scholar 

  21. Klyukin, I.N., Kolbunova, A.V., Selivanov, N.A., et al., Russ. J. Inorg. Chem., 2021, vol. 66, p. 1798. https://doi.org/10.1134/S003602362112007X

    Article  CAS  Google Scholar 

  22. Zhao, X., Yang, Z., Chen, H., et al., Coord. Chem. Rev., 2021, vol. 444, p. 214042. https://doi.org/10.1016/j.ccr.2021.214042

    Article  CAS  Google Scholar 

  23. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, p. 335. https://doi.org/10.1134/S003602362003002X

    Article  CAS  Google Scholar 

  24. Avdeeva, V.V., Vologzhanina, A.V., Korolenko, S.E., et al., Polyhedron, 2022, vol. 223, p. 115932. https://doi.org/10.1016/j.poly.2022.115932

    Article  CAS  Google Scholar 

  25. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Coord. Chem. Rev., 2022, vol. 469, p. 214636. https://doi.org/10.1016/j.ccr.2022.214636

    Article  CAS  Google Scholar 

  26. Avdeeva, V.V., Kubasov, A.S., Korolenko, S.E., et al., Russ. J. Inorg. Chem., 2022, vol. 67, p. 628. https://doi.org/10.1134/S0036023622050023

    Article  CAS  Google Scholar 

  27. Avdeeva, V.V., Vologzhanina, A.V., Kubasov, A.S., et al., Inorganics, 2022, vol. 10, p. 99. https://doi.org/10.3390/inorganics10070099

    Article  CAS  Google Scholar 

  28. Kravchenko, E.A., Gippius, A.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, p. 546. https://doi.org/10.1134/S0036023620040105

    Article  Google Scholar 

  29. Avdeeva, V.V., Polyakova, I.N., Vologzhanina, A.V., et al., Russ. J. Inorg. Chem., 2016, vol. 61, p. 1125. https://doi.org/10.1134/S0036023616090023

    Article  CAS  Google Scholar 

  30. Malinina, E.A., Goeva, L.V., Buzanov, G.A., et al., Russ. J. Inorg. Chem., 2020, vol. 65, p. 126. https://doi.org/10.1134/S0036023620010118

    Article  CAS  Google Scholar 

  31. Malinina, E.A., Goeva, L.V., Buzanov, G.A., et al., Russ. J. Inorg. Chem., 2019, vol. 64, p. 1325. https://doi.org/10.1134/S0036023619110123

    Article  CAS  Google Scholar 

  32. Tiritiris, I., Nguyen-Duc Van, and Schleid, Th., Z. Anorg. Allg. Chem., 2004, vol. 630, p. 1763. https://doi.org/10.1002/zaac.200470138

    Article  Google Scholar 

  33. Duc Van Nguyen, New Salt-Like Dodecahydro-closo-Dodecaborates and Efforts for the Partial Hydroxylation of [B 12 H 12 ] 2– Anions, PhD Thesis, Institut für Anorganische Chemie der Universität Stuttgart, 2009.

  34. Kayumov, A.D., Goeva, L.V., Solntsev, K.A., and Kuznetsov, N.T., Zh. Neorg. Khim., 1988, vol. 33, p. 1771.

    CAS  Google Scholar 

  35. Kayumov, A.D., Goeva, L.V., Kuznetsov, N.T., et al., Zh. Neorg. Khim., 1988, vol. 33, no. 8, p. 1936.

    CAS  Google Scholar 

  36. Avdeeva, V.V., Polyakova, I.N., Goeva, L.V., et al., Russ. J. Inorg. Chem., 2016, vol. 61, p. 302. https://doi.org/10.1134/S0036023616030037

    Article  CAS  Google Scholar 

  37. Zhao, X., Yao, C., Chen, H., et al., J. Mater. Chem. A, 2019, vol. 7, p. 20945. https://doi.org/10.1039/C9TA06573C

    Article  CAS  Google Scholar 

  38. Fu, Z., Cai, Z., Pan, K., and Zhang, L., Chin. J. Struct. Chem., 1984, vol. 3, p. 231.

    CAS  Google Scholar 

  39. Kayumov, A., Solntsev, K.A., Goeva, L.V., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 1990, vol. 35, p . 1729.

  40. Avdeeva, V.V., Polyakova, I.N., Goeva, L.V., et al., Russ. J. Inorg. Chem., 2015, vol. 60, p. 817. https://doi.org/10.1134/S0036023615070037

    Article  CAS  Google Scholar 

  41. Zhang, Z., Zhang, Y., Li, Zh., et al., Eur. J. Inorg. Chem., 2018, vol. 8, p. 981. https://doi.org/10.1002/ejic.201701206

    Article  CAS  Google Scholar 

  42. Avdeeva, V.V., Polyakova, I.N., Goeva, L.V., et al., Inorg. Chim. Acta, 2016, vol. 451, p. 129. https://doi.org/10.1016/j.ica.2016.07.016

    Article  CAS  Google Scholar 

  43. Goeva, L.V., Avdeeva, V.V., Malinina, E.A., et al., Russ. J. Inorg. Chem., 2018, vol. 63, p. 1050. https://doi.org/10.1134/S0036023618080089

    Article  CAS  Google Scholar 

  44. Matveev, E.Yu., Novikov, I.V., Kubasov, A.S., et al., Russ. J. Inorg. Chem., 2021, vol. 66, p. 187. https://doi.org/10.1134/S0036023621020121

    Article  CAS  Google Scholar 

  45. Avdeeva, V.V., Kubasov, A., Korolenko, S.E., et al., Polyhedron, 2022, vol. 217, p. 115740. https://doi.org/10.1016/j.poly.2022.115740

    Article  CAS  Google Scholar 

  46. Avdeeva, V.V., Vologzhanina, A.V., Ugolkova, E.A., et al., J. Solid State Chem., 2021, vol. 296, p. 121989. https://doi.org/10.1016/j.jssc.2021.121989

    Article  CAS  Google Scholar 

  47. Zakharova, I.A., Kuznetsov, N.T., and Gaft, Yu.L., Inorg. Chim. Acta, 1978, vol. 28, p. 271. https://doi.org/10.1016/S0020-1693(00)87446-0

    Article  CAS  Google Scholar 

  48. Kubasov, A.S., Matveev, E.Y., Retivov, V.M., et al., Russ. Chem. Bull., 2014, vol. 63, p. 187. https://doi.org/10.1007/s11172-014-0412-2

    Article  CAS  Google Scholar 

  49. Knoth, W.H., Miller, H.C., Sauer, J.C., et al., Inorg. Chem., 1964, vol. 3, p. 159.

    Article  CAS  Google Scholar 

  50. SAINT, Madison: Bruker AXS Inc., 2018.

  51. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3. https://doi.org/10.1107/S1600576714022985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  53. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  54. Cook, T.D., Tyler, S.F., McGuire, C.M., et al., ACS Omega, 2017, vol. 2, p. 3966. https://doi.org/10.1021/acsomega.7b00714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pegis, M.L., Roberts, J.A.S., Wasylenko, D.J., et al., Inorg. Chem., 2015, vol. 54, p. 11883. https://doi.org/10.1016/j.electacta.2021.139465

    Article  CAS  PubMed  Google Scholar 

  56. Matsia, S., Kaoulla, A., Menelaoua, M., et al., Polyhedron, 2022, vol. 212, p. 115577. https://doi.org/10.1016/j.poly.2021.115577

    Article  CAS  Google Scholar 

  57. Prabha, D., Singh, D., Kumar, P., and Gupta, R., Inorg. Chem., 2021, vol. 60, p. 17889. https://doi.org/10.1021/acs.inorgchem.1c02479

    Article  CAS  PubMed  Google Scholar 

  58. He, Y., Gorden, J.D., and Goldsmith, C.R., Inorg. Chem., 2011, vol. 50, p. 12651. https://doi.org/10.1016/j.ica.2021.120526

    Article  CAS  PubMed  Google Scholar 

  59. Benmansour, S., Setifi, F., Triki, S., and Gomez-Garcia, C.J., Inorg. Chem., 2012, vol. 51, p. 2359. https://doi.org/10.1021/ic202361p

    Article  CAS  PubMed  Google Scholar 

  60. Begum, A., Seewald, O., Flörke, U., and Henkel, G., ChemSelect, 2022, vol. 1, p. 2257. https://doi.org/10.1002/slct.201600505

    Article  CAS  Google Scholar 

  61. Avdeeva, V.V., Malinina, E.A., Churakov, A.V., et al., Polyhedron, 2019, vol. 169, p. 144. https://doi.org/10.1016/j.poly.2019.05.018

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out in terms of State assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Avdeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

ADDITIONAL INFORMATION

This article is prepared for the memorial issue in tribute to the Corresponding Member of the Russian Academy of Sciences K.Yu. Zhizhin on his 50th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeeva, V.V., Kubasov, A.S., Nikiforova, S.E. et al. Ligand Metathesis in Nickel(II) Complexation with closo-Decaborate Anion. Russ J Coord Chem 49, 338–344 (2023). https://doi.org/10.1134/S1070328423600171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600171

Keywords:

Navigation