Skip to main content
Log in

Tetranuclear Cu(II) and Ni(II) complexes with 1,3,5-triketone ligands: A quantum-chemical simulation of exchange interactions

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A series of tetranuclear copper and nickel coordination compounds based on 1,3,5-triketone ligands is calculated using the B3LYP/6-31G(d,p) method of the density functional theory. The antiferromagnetic exchange is predicted to be in all studied complexes, regardless of the type of the metal, the size of linker groups, and the presence of additional solvent (pyridine) molecules. The Ni(II) complexes are characterized by weak exchange interactions, which makes it possible to consider them as candidates for the development of spin qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ., 2000.

    Google Scholar 

  2. Timco, G.A., Carretta, S., Troiani, F., et al., Nat. Nanotechnol., 2009, vol. 4, no. 3, p. 173.

    Article  CAS  Google Scholar 

  3. Loss, D. and DiVincenzo, D.P., Phys. Rev. A: At., Mol., Opt. Phys., 1998, vol. 57, no. 1, p. 120.

    Article  CAS  Google Scholar 

  4. Stamp, P.C.E. and Gaita-Arino, A., J. Mater. Chem., 2009, vol. 19, no. 12, p. 1718.

    Article  CAS  Google Scholar 

  5. Troiani, F. and Affronte, M., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3119.

    Article  CAS  Google Scholar 

  6. Aromí, G., Aguilà, D., Gamez, P., et al., Chem. Soc. Rev., 2012, vol. 41, no. 2, p. 537.

    Article  Google Scholar 

  7. Timco, G.A., Faust, T.B., Tuna, F., and Winpenny, R.E.P., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3067.

    Article  CAS  Google Scholar 

  8. Faust, T.B., Tuna, F., Timco, G.A., et al., Dalton Trans., 2012, vol. 41, no. 44, p. 13626.

    Article  CAS  Google Scholar 

  9. Lintvedt, R.L., Borer, L.L., Murtha, D.P., et al., Inorg. Chem., 1974, vol. 13, no. 1, p. 18.

    Article  CAS  Google Scholar 

  10. Guthrie, J.W., Lintvedt, R.L., and Glick, M.D., Inorg. Chem., 1980, vol. 19, no. 10, p. 2949.

    Article  CAS  Google Scholar 

  11. Lintvedt, R.L. and Zehetmair, J.K., Inorg. Chem., 1990, vol. 29, no. 12, p. 2204.

    Article  CAS  Google Scholar 

  12. Aromí, G., Gamez, P., and Reedijk, J., Coord. Chem. Rev., 2008, vol. 252, nos. 8–9, p. 964.

    Article  Google Scholar 

  13. Lai, S.Y., Lin, T.W., Chen, Y.H., et al., J. Am. Chem. Soc., 1999, vol. 121, no. 1, p. 250.

    Article  CAS  Google Scholar 

  14. Liu, I.P.C., Benard, M., Hasanov, H., et al., Chem.-Eur. J., 2007, vol. 13, no. 31, p. 8667.

    Article  CAS  Google Scholar 

  15. Affronte, M., Casson, I., Evangelisti, M., et al., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, no. 40, p. 6496.

    Article  CAS  Google Scholar 

  16. Barrios, L.A., Aguila, D., Roubeau, O., et al., Chem.-Eur. J., 2009, vol. 15, no. 42, p. 11235.

    Article  CAS  Google Scholar 

  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., GAUSSIAN 09. Revision D.01, Wallingford: Gaussian Inc., 2013.

    Google Scholar 

  18. Kohn, W. and Sham, L.J., Phys. Rev. A, 1965, vol. 140, no. 4, p. A1133.

    Article  Google Scholar 

  19. Starikov, A.G., Russ. J. Gen. Chem., 2009, vol. 79, no. 12, p. 2792.

    Article  CAS  Google Scholar 

  20. Starikov, A.G., Minyaev, R.M., and Minkin, V.I., J. Mol. Struct.: THEOCHEM, 2009, vol. 895, nos. 1–3, p. 138.

    Article  CAS  Google Scholar 

  21. Noodleman, L., J. Chem. Phys., 1981, vol. 74, no. 10, p. 5737.

    Article  CAS  Google Scholar 

  22. Yamaguchi, K., Takahara, Y., Fueno, T., and Nasu, K., Jpn. J. Appl. Phys., 1987, vol. 26, no. 8, p. L1362.

    Article  CAS  Google Scholar 

  23. Yamaguchi, K., Okumura, M., Mori, W., et al., Chem. Phys. Lett., 1993, vol. 210, nos. 1–3, p. 201.

    Article  CAS  Google Scholar 

  24. Chemcraft: http://www.chemcraftprog.com

  25. Boyd, P.D.W., Lee, K.S., and Zvagulis, M., Aust. J. Chem., 1986, vol. 39, no. 8, p. 1249.

    Article  CAS  Google Scholar 

  26. Starikov, A.G., Minyaev, R.M., Starikova, A.A., and Minkin, V.I., Russ. J. Coord. Chem., 2010, vol. 36, no. 8, p. 597.

    Article  CAS  Google Scholar 

  27. Barrios, L.A., Aguila, D., Mellat, S., et al., C.R. Chim., 2008, vol. 11, no. 10, p. 1117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Additional information

Original Russian Text © A.A. Starikova, A.G. Starikov, V.I. Minkin, 2015, published in Koordinatsionnaya Khimiya, 2015, Vol. 41, No. 8, pp. 451–459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikova, A.A., Starikov, A.G. & Minkin, V.I. Tetranuclear Cu(II) and Ni(II) complexes with 1,3,5-triketone ligands: A quantum-chemical simulation of exchange interactions. Russ J Coord Chem 41, 487–495 (2015). https://doi.org/10.1134/S1070328415080060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328415080060

Keywords

Navigation