Skip to main content
Log in

Physical Effects Arising from the Motion of Plasma Flows in the Ionosphere

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The occurrence and evolution of plasma fluxes in the ionosphere is one of the factors that have a significant impact on the dynamics and state of the geophysical environment. The study of plasma and magnetohydrodynamic effects arising from the motion of plasma jets in real space is complicated by the scale of the phenomenon and the complex nature of the background environment, which is a non-stationary system of interacting neutral and partially or completely magnetized charged particles. The creation of theoretical models of this phenomenon is also completely unsolved scientific task. Under these conditions, controlled ionospheric plasma experiments are of great importance. The results of active rocket experiments obtained over the past few decades have made it possible to study the processes of magnetohydrodynamic interaction between a high-velocity plasma and the geomagnetic field, the generation of electromagnetic and MHD waves, optical radiation in the visible, UV and IR ranges, background gas ionization, the emergence of complex systems of electric fields and currents, the acceleration of charged particles, and other phenomena. The article discusses the current physical concepts developed from the analysis of the available experimental data, as well as the tasks and possibilities of new active experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Active Experiments in Space: Past, Present, and Future, Delzanno, G.L., Borovsky, J.E., and Mishin, E.V., Eds., Lausanne: Frontiers Media SA, 2020. https://doi.org/10.3389/978-2-88963-659-4

    Book  Google Scholar 

  2. Adushkin, V.V., Zetser, Yu.I., Kiselev, Yu.N., Nemtchinov, I.V., and Khristoforov, B.D., Active geophysical rocket experiments with injection of a high-velocity plasma jet in the ionosphere, Dokl. Akad. Nauk, 1993, vol. 331, no. 4, pp. 486–489.

    Google Scholar 

  3. Adushkin, V.V., Zetser, Yu.I., Zotov, N.I., Kiselev, Yu.N., Khristoforov, B.D., Yur’ev, V.L., and Poklad, Yu.V., RF Patent for Invention no. 2144685, 2000.

  4. Alfven, H., Cosmic Plasma, Dordrecht: Springer, 1981.

    Book  Google Scholar 

  5. Angelopoulos, V., Baumjohann, W., Kennel, C., Coronti, F.V., Kivelson, M.G., Pellat, R., Walker, R., Luehr, H., and Paschmann, G., Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 1992, vol. 97, no. A4, pp. 4027–4040.

    Article  Google Scholar 

  6. Baumjohann, W., Paschmann, G., and Lühr, H., Characteristics of high-speed ion flows in the plasma sheet, J. Geophys. Res., 1990, vol. 95, no. A4, pp. 3801–3809.

    Article  Google Scholar 

  7. Bernhardt, P.A., Probing the magnetosphere using chemical releases from the combined release and radiation effects satellite, Phys. Fluids, 1992, vol. B4, no. 7, pp. 2249–2256.

    Article  Google Scholar 

  8. Bernhardt, P.A., Roussel-Dupre, R.A., Pongratz, M.B., Haerendel, G., Valenzuela, A., Gurnett, D. A., and Anderson, R.R., Observation and theory of the AMPTE magnetotail barium releases, J. Geophys. Res., 1987, vol. 92, no. A6, pp. 5777–5794.

    Article  Google Scholar 

  9. Borovsky, J.E. and Bonnell, J., The dc electrical coupling of flow vortices and flow channels in the magnetosphere to the resistive ionosphere, J. Geophys. Res., 2001, vol. 106, no. A12, pp. 28967–28994.

    Article  Google Scholar 

  10. Brenning, N., Kelley, M.C., Providakes, J., Stenbaek-Nielsen, H.C. and Swenson, C., Barium swarm: An ionospheric alternating current generator in CRIT-I, J. Geophys. Res., 1991,vol. 96, no. A6, pp. 9735–9743.

    Article  Google Scholar 

  11. Delamere, P.A., Stenbaek-Nielsen, H.C., Hampton, D.L., and Wescott, E.M., Optical observation of the early (t < 5 s) ion dynamics of the CRRES G1, G9 and G11A releases, J. Geophys. Res., 1996, vol. 101, no. A8, pp. 17243–17257.

    Article  Google Scholar 

  12. Delamere, P.A., Stenbaek-Nielsen, H.C., Swift, D.W. and Otto, A., Momentum transfer in the combined release and radiation effects satellite plasma injection experiments: The role of parallel electric fields, Phys. Plasmas, 2000, vol. 7, no. 9, pp. 3771–3780.

    Article  Google Scholar 

  13. Delamere, P., Stenbaek-Nielsen, H., Pfaff, R., Erlandson, R., Meng, C., Zetzer, J., et al., Dynamics of the Active Plasma Experiment North Star artificial plasma jet, J. Spacecr. Rockets, 2004, vol. 41, no. 4, pp. 503–508.

    Article  Google Scholar 

  14. Dimonte, G. and Wiley, L.G., Dynamics of exploding plasmas in a magnetic field, Phys. Rev. Lett., 1991, vol. 67, no. 13, pp. 1755–1758.

    Article  Google Scholar 

  15. Dungey, J.W., Cosmic Electrodynamics, Cambridge: Cambridge Univ. Press, 1958.

    Google Scholar 

  16. Erlandson, B., Meng, C.-I., Zetzer, J., Kiselev, Y., Gavrilov, B., Stenbaek-Nielsen, H., Lynch, K., Pfaff, R., Swaminathan, P., Kumar, C.K., Dorga, V.K., Stoyanov, B.J., Delamere, P.A., Bounds, S.R., and Gatsonis, N.A., The APEX North Star experiment: observation of the high-speed plasma jets injected perpendicular to the magnetic fields, Adv. Space Res., 2002, vol. 29, pp. 1317–1326.

    Article  Google Scholar 

  17. Erlandson, R.E., Swaminathan, P.K., Meng, C.-I., Stoya-nov, B.J., Zetzer, J.I., Gavrilov, B.G., Kiselev, Yu.N. and Romanovsky, Yu.A., Observation of auroral emissions induced by artificial plasma jets, Geophys. Res. Lett., 1999, vol. 26, no. 11, pp. 1553–1556.

    Article  Google Scholar 

  18. Fuselier, S.A., Mende, S.B., Geller, S.P., Miller, M., Hoffman, R.A., Wygant, J.R., Pongratz, M., Meredith, N.P., and Anderson, R.R., Dynamics of the CRRES barium releases in the magnetosphere, J. Geophys. Res., 1994, vol. 99, no. A9, pp. 17379–17390.

    Article  Google Scholar 

  19. Gavrilov, B.G., Zetser, Yu.I., Podgornyi, A.I., and Podgornyi, I.M., Electrodynamical deceleration of the plasma jet at its injection into the magnetosphere and the ionosphere heating, Dokl. Akad. Nauk, 1994, vol. 336, no. 5, pp. 684–687.

    Google Scholar 

  20. Gavrilov, B.G., Podgorny, A.I., Podgorny, I.M., and Zetzer, J.Y., The investigation of the field-aligned current generation during injection of plasma jet into the magnetosphere, Geomagn. Aeron., 1995, vol. 34, no. 5, pp. 600–604.

    Google Scholar 

  21. Gavrilov, B.G., Kiselev, Y.N., Podgorny, I.M., Sobyanin, D.B., Zetzer, J.I., Erlandson, R.E., and Meng, C.-I., Dynamics of a high energy plasma jet in space: in situ experiment and laboratory simulation, Adv. Space Res., 1998, vol. 21, no. 5, pp. 773–776.

    Article  Google Scholar 

  22. Gavrilov, B.G., Zetzer, J.I., Podgorny, I.M., Sobyanin, D.B., Meng, C.-I., Erlandson, R.E., Stenbaek-Nielsen, H.C., Pfaff, R.F., and Lynch, K.A., Plasma jet motion across the geomagnetic field in the “North Star” active geophysical experiment, Cosmic Res., 2003, vol. 41, no. 1, pp. 28–38.

    Article  Google Scholar 

  23. Gavrilov, B.G., Podgorny, I.M., Sobyanin, D.B., Zetzer, J.I., Erlandson, R.E., Meng, C.I., Pfaff, R.F., and Lynch, K.A., North Star plasma-jet experiment particles and electric and magnetic field measurements, J. Spacecr. Rockets, 2004, vol. 41, no. 4, pp. 490–495.

    Article  Google Scholar 

  24. Haerendel, G., Experiments with plasmas artificially injected into near-Earth space, Front. Astron. Space Sci., 2019, vol. 6, Article 29. https://doi.org/10.3389/fspas.2019.00029

    Article  Google Scholar 

  25. Iijima, T. and Potemra, T.A., The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res., 1976, vol. 81, no. A13, pp. 2165–2174.

    Article  Google Scholar 

  26. Kamide, Y. and Baumjohann, W., Magnetosphere-Ionosphere Coupling, Ser. Physics and Chemistry in Space Planetology, vol. 23, Berlin: Springer, 1993.

  27. Kelley, M.C., Swenson, C.M., Brenning, N., and Pfaff, R., Electric and magnetic field measurements inside a high-velocity neutral beam undergoing ionization, J. Geophys. Res., 1991, vol. 96, no. A6, pp. 9703–9718.

    Article  Google Scholar 

  28. Lynch, K.A., Torbert, R.B., Chutter, M., Erlandson, R.E., Meng, C.I., Zetzer, J.I., Gavrilov, B.G., and Kiselev, Y., Active plasma experiment: North Star particle data, J. Spacecr. Rockets, 2004, vol. 41, no. 4, pp. 496–502.

    Article  Google Scholar 

  29. Lysak, R.L., Auroral electrodynamics with current and voltage generators, J. Geophys. Res., 1985, vol. 90, no. A5, pp. 4178–4190.

    Article  Google Scholar 

  30. Mill, J.D., O’Neil, R.R., Prace, S., et al., Midcourse space experiment: introduction to the spacecraft, instruments, and scientific objectives, J. Spacecr. Rockets, 1994, vol. 31, no. 5, pp. 900–907.

    Article  Google Scholar 

  31. Petrukovich, A.A., Baumjohann, W., Nakamura, R., Schödel, R., and Mukai, T., Are earthward bursty bulk flows convective or field-aligned?, J. Geophys. Res., 2001, vol. 106, no. A10, pp. 21211–21215.

    Article  Google Scholar 

  32. Pfaff, R.F., Freudenreich, H.T., Bounds, S., Delamere, P.A., Erlandson, R.E., Meng, C.I., Zetzer, J.I., and Gavrilov, B.G., Electric field, magnetic field, and density measurements on the active plasma experiment sounding rocket, J. Spacecr. Rockets, 2004, vol. 41, no. 4, pp. 521–532.

    Article  Google Scholar 

  33. Poklad, Yu.V., Gavrilov, B.G., Zetzer, J.I., et al., Trigger effect of the afterglow background medium after injection of the high speed plasma jet in the Fluxus and North Star experiments, Proc. 24th Int. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics; Tomsk, 2018, vol. 10833, Paper ID 108339H. https://doi.org/10.1117/12.2504059

  34. Raizer, Yu.P., The deceleration and energy conversions of a plasma expanding in vacuum in the presence of a magnetic field, Prikl. Mekh. Tekh. Fiz., 1963, vol. 4, no. 6, pp. 19–28. Transl. as NASA Tech. Tramnsl. No. TTF-239, 1964.

  35. Scholer, M., On the motion of artificial ion clouds in the magnetosphere, Planet. Space Sci., 1970, vol. 18, pp. 977–1004.

    Article  Google Scholar 

  36. Sergeev, V.A., Sauvaud, J.-A., Popescu, D., Kovrazhkin, R.A., Liou, K., Newell, P.T., Brittnacher, M., Parks, G., Nakamura, R., Mukai, T., and Reeves., G.D., Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet, Geophys. Res. Lett., 2000, vol. 27, no. 6, P. 851–854.

    Article  Google Scholar 

  37. Shiokawa, K., Baumjohann, W., and Haerendel, G., Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 1997, vol. 24, no. 10, pp. 1179–1182.

    Article  Google Scholar 

  38. Sobyanin, D.B., Gavrilov, B.G., and Podgorny, I.M., Laboratory investigation of plasma jet interaction with transverse magnetic field, Adv. Space Res., 2002, vol. 29, no. 9, pp. 1345–1349.

    Article  Google Scholar 

  39. Swenson, C.M., Kelley, M.C., Brenning, N., Torbert, R., Primdahl, F., and Baker, K.D., CRIT II electric, magnetic, and density observations in an ionizing neutral jet, Adv. Space Res., 1992, vol. 12, no. 12, pp. 65–90.

    Article  Google Scholar 

  40. Valenzuela, A., Haerendel, G., Föppl, H., Melzner, F., Neuss, H., Rieger, E., Stöcker, J., Bauer, O., Höfner, H., and Loidl, J., The AMPTE artificial comet experiments, Nature, 1986, vol. 320, no. 6064, pp. 700–703.

    Article  Google Scholar 

  41. Zetzer, J.I., Kozlov, S.I., Rybakov, V.A., Ponomarenko, A.V., Smirnova, N.V., Romanovsky, Yu.A., Meng, C.-I., Erlandson, R., and Stoyanov, B., Airglow in the visible and infrared spectral ranges of the disturbed upper atmosphere under conditions of high-velocity plasma jet injection: I. Experimental data, Cosmic Res., 2002, vol. 40, no. 3, pp. 233–240.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A17-117112350014-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Gavrilov.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, B.G., Poklad, Y.V. Physical Effects Arising from the Motion of Plasma Flows in the Ionosphere. Izv., Phys. Solid Earth 57, 731–744 (2021). https://doi.org/10.1134/S1069351321050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321050049

Keywords:

Navigation