Skip to main content
Log in

Stress State Dynamics in Southern California from Geomechanical Monitoring Data before the М = 7.1 Earthquake of July 6, 2019

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Since 2009, the stress-strain state (SSS) of the Earth’s crust in Southern California has been monitored using geomechanical modeling that allows for current seismicity parameters in the region. Based on the calculations of the parameter reflecting the degree of closeness of the geological medium to the limiting stress, the regularities of its spatiotemporal distribution before strong seismic events (M > 7) that occurred in Southern California in 2010 and 2019 are established. The SSS anomalies are revealed at a distance of 10–30 km from the source of the future earthquake a few months before the event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Akopian, S.Ts., Bondur, V.G., and Rogozhin, E.A., Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv. Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 32–51. https://doi.org/10.1134/S1069351317010025

    Article  Google Scholar 

  2. Bondur, V. and Kuznetsova, L., Satellite monitoring of seismic hazard area geodynamics using the method of lineament analysis, Proc. 31st International Symposium on Remote Sensing of Environment: Global Monitoring for Sustainability and Security, Saint Petersburg, 2005, Saint Petersburg: ISRSE, 2005, pp. 376–379.

  3. Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005a, vol. 403, no. 5, pp. 736–740.

    Google Scholar 

  4. Bondur, V. and Smirnov, V., Monitoring of ionosphere variations during the preparation and realization of earthquakes using satellite navigation system data, Proc. 31st International Symposium on Remote Sensing of Environment: Global Monitoring for Sustainability and Security, Saint Petersburg, 2005, Saint Petersburg: ISRSE, 2005b, pp. 372–375.

  5. Bondur, V.G. and Voronova, O.S., Variations of outgoing long-wave radiation during the preparation and occurrence of strong earthquakes in the territory of Russia in 2008 and 2009, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2012, no. 1, pp. 79–85.

  6. Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl. Earth Sci., 2005a, vol. 402, no. 4, pp. 561–567.

    Google Scholar 

  7. Bondur, V.G. and Zverev, A.T., A method of earthquake forecasting based on the lineament dynamic analysis using satellite imagery, Issled. Zemli Kosm., 2005b, no. 3, pp. 37–52.

  8. Bondur, V.G. and Zverev, A.T., Formation mechanisms of lineament systems recorded on satellite images during monitoring of earthquake-prone territories, Issled. Zemli Kosm., 2007, no. 1, pp. 47–56.

  9. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl. Earth Sci., 2007, vol. 414, no. 1, pp. 666–669. https://doi.org/10.1134/S1028334X07040381

    Article  Google Scholar 

  10. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: The example of Southern California, Dokl. Earth Sci., 2010, vol. 430, no. 1, pp. 147–150. https://doi.org/10.1134/S1028334X10010320

    Article  Google Scholar 

  11. Bondur, V., Garagash, I., Gokhberg, M., and Steblov, G., Monitoring of the stress state variations of the Southern California for the purpose of earthquake prediction, Proc. Fall Meeting of American Geophysical Union, San-Francisco, 2014, Washington: AGU, 2014, Paper ID NH21C-05.

  12. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large scale interaction of seismically active tectonic provinces: The example of Southern California, Dokl. Earth Sci., 2016a, vol. 466, no. 2, pp. 183–186. https://doi.org/10.1134/S1028334X16020100

    Article  Google Scholar 

  13. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv. Phys. Solid Earth, 2016b, vol. 52, no. 1, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  14. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., The dynamics of the stress state in Southern California based on the geomechanical model and current seismicity: Short term earthquake prediction, Russ. J. Earth Sci., 2017, vol. 17, Paper ID ES1005. https://doi.org/10.2205/2017ES000596

  15. Bondur, V.G., Tsidilina, M.N., Feoktistova, N.V., Voronova, O.S., and Timoshina, G.A., Developing a single system for comprehensive monitoring of catastrophic phenomena based on satellite and ground data, Proc. 18th International Multidisciplinary Scientific GeoConference SGEM., Albena, 2018, Sofia: STEF92, 2018a, vol. 18, no. 2.2, pp. 141–156.

  16. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S. Systematization of ionospheric, geodynamic, and thermal precursors of strong (M ≥ 6) earthquakes detected from space, Izv., Atmos. Ocean. Phys., 2018b, vol. 54, no. 9, pp. 1172–1185. https://doi.org/10.1134/S0001433818090475

    Article  Google Scholar 

  17. Bondur, V.G., Gokhberg, M.B., Garagash, I.A., and Alekseev, D.A., A local anomaly of the stress state of the Earth’s crust before the strong earthquake (M = 7.1) of July 5, 2019, in the area of Ridgecrest (Southern California), Dokl. Earth Sci., 2020, vol. 490, no. 1, pp. 13–17. https://doi.org/10.7868/S2686739720010016

    Article  Google Scholar 

  18. Brandenberg, S.J., Stewart, J.P., Wang, P., Nweke, C.C., Hudson, K., Goulet, C.A., et al., Ground deformation data from GEER investigations of Ridgecrest earthquake sequence, Seismol. Res. Lett., 2020, vol. 91, no. 4, pp. 2024–2034. https://doi.org/10.1785/0220190291

    Article  Google Scholar 

  19. Clayton, R.W., Heaton, T., Kohler, M., Chandy, M., Guy, R., and Bunn, J., Community Seismic Network: a dense array to sense earthquake strong motions, Seismol. Res. Lett., 2015, vol. 86, no. 5, pp. 1354–1363. https://doi.org/10.1785/0220150094

    Article  Google Scholar 

  20. Fialko, Y., Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system, Nature, 2006, vol. 441, pp. 968–971. https://doi.org/10.1038/nature04797

    Article  Google Scholar 

  21. Field, E.H. et al. (California Earthquake Probabilities Collab.), Uniform California earthquake rupture forecast, version 2 (UCERF 2), Bull. Seismol. Soc. Am., 2009, vol. 99, no. 4, pp. 2053–2107. https://doi.org/10.1785/0120080049

    Article  Google Scholar 

  22. Field, E.H. et al. (California Earthquake Probabilities Collab.), Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3), Bull. Seismol. Soc. Am., 2015a, vol. 105, no. 2A, p. 511–543.

    Article  Google Scholar 

  23. Field, E.H., et al. (2014 WGCEP Collab.), UCERF3: A new earthquake forecast for California’s complex fault system, U.S. Geol. Surv., 2015b, no. 2015–3009. https://doi.org/10.3133/fs20153009

  24. Garagash, I.A., Search for the sites of occurrence of strong earthquakes, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 4, pp. 862–867.

    Google Scholar 

  25. Gomberg, J., Seismicity and shear strain in the Southern Great Basin of Nevada and California, J. Geophys. Res., 1991, vol. 96, no. B10, pp. 16383–16399.

    Article  Google Scholar 

  26. Hutton, L.K., Woessner, J., and Hauksson, E., Earthquake monitoring in Southern California for seventy-seven years (1932 – 2008), Bull. Seismol. Soc. Am., 2010, vol. 100, no. 2, pp. 423–446. https://doi.org/10.1785/0120090130

    Article  Google Scholar 

  27. FLAC3D–Fast Lagrangian Analysis of Continua in 3 Dimensions, Ver. 3.1, User’s Manual, Itasca Consulting Group, Minneapolis: Itasca, 2006.

  28. Johnston, M.J.S., Borcherdt, R.D., Linde, A.T., and Gladwin, M.T., Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: implications for nucleation, fault response, earthquake prediction, and tremor, Bull. Seismol. Soc. Am., 2006, vol. 96, no. 4B, pp. S56–S72. https://doi.org/10.1785/0120050822

    Article  Google Scholar 

  29. Kasahara, K., Earthguake Mechanies, Cambriage: Cambriage Univ. Press, 1981.

    Google Scholar 

  30. Lyons, S. and Sandwell, D., Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B1, Paper ID 2047. https://doi.org/10.1029/2002JB001831

  31. Mazzotti, S., Leonard., L.J., Cassidy, J., Rogers, G., and Halchuk, S., Seismic hazard in western Canada from GPS strain rates versus earthquake catalog, J. Geophys. Res.: Solid Earth, 2011, vol. 116, no. B12, Paper ID 12310. https://doi.org/10.1029/2011JB008213

  32. Mogi, K., Earthquake Prediction, Tokyo: Acad. press, 1985.

  33. Molchan, G. and Keilis-Borok, V., Earthquake prediction: Probabilistic aspect, Geophys. J. Int., 2008, vol. 173, no. 3, pp. 1012–1017.

    Article  Google Scholar 

  34. Pulinets, S.A., Bondur, V.G., Tsidilina, M.N., and Gapo-nova, M.V., Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example, Geomagn. Aeron., 2010, vol. 50, no. 2, pp. 231–242. https://doi.org/10.1134/S0016793210020118

    Article  Google Scholar 

  35. Riznichenko, Yu.V., Problemy seismologii: Izbrannye trudy (Problems of Seismology: Selected Works), Solov’ev, S.L., Ed., Moscow: Nauka, 1985.

  36. Ross, Z.E., Trugman, D.T., Hauksson, E., and Shearer, P.M., Searching for hidden earthquakes in Southern California, Science, 2019, vol. 364, no. 6442, pp. 767–771.

    Article  Google Scholar 

  37. Rundle, J.B., Luginbuhl, M., Giguere, A., and Turcotte, D.L., Natural time, nowcasting and the physics of earthquakes: Estimation of seismic risk to global megacities, Pure Appl. Geophys., 2017, vol. 175, pp. 647–660. https://doi.org/10.1007/s00024-017-1720-x

    Article  Google Scholar 

  38. Savage, J.C., Prescott, W.H., Lisowski, M., and King, N.E., Strain accumulation in southern California, 1973–1980, J. Geophys. Res.: Solid Earth, 1981, vol. 86, no. B8, pp. 6991–7001. https://doi.org/10.1029/JB086iB08p06991

    Article  Google Scholar 

  39. Shelly, D.R., A high-resolution seismic catalog for the initial 2019 Ridgecrest Earthquake sequence: Foreshocks, aftershocks, and faulting complexity, Seismol. Res. Lett., 2020, vol. 91, no. 4, pp. 1971–1978. https://doi.org/10.1785/0220190309

    Article  Google Scholar 

  40. Shinji, T. and Stein, R., Ridgecrest earthquake shut down cross-fault aftershocks, 2019, Temblor. https://doi.org/10.32858/temblor.043

  41. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  42. The San-Andreas Fault System, California (U.S. Geological Survey Professional Paper 1515), Wallace, R.E., Ed., Washington: USGS, 1990.

  43. Turcotte, D.L., Crustal deformation and fractals, a review, in Fractals and Dynamic Systems in Geosciences, Kruhl, J.H., Ed., Berlin: Springer-Verlag, 1994, pp. 7–23.

    Google Scholar 

  44. Williams, C.A. and Richardson, R.M., A rheological layered three-dimensional model of the San Andreas Fault in central and Southern California, J. Geophys. Res.: Solid Earth, 1991, vol. 96, no. B10, pp. 16597–16623.

    Article  Google Scholar 

Download references

Funding

The studies on monitoring the stress-strain state in Southern California using the geomechanical model and current seismicity is conducted by the team of IPE RAS and AEROCOSMOS Research Institute under the state-budget-funded research projects nos. AAAA-A19-119081390037-2, AAAA-A17-117061950051-8, and AAAA-A17-117051110248-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Gokhberg, M.B., Garagash, I.A. et al. Stress State Dynamics in Southern California from Geomechanical Monitoring Data before the М = 7.1 Earthquake of July 6, 2019. Izv., Phys. Solid Earth 57, 1–19 (2021). https://doi.org/10.1134/S106935132101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132101002X

Keywords:

Navigation