Skip to main content
Log in

Strong Ground Motion Simulation for Forecasting the Probable Seismic Impacts in the Territory of the Republic of North Ossetia–Alania

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The models based on the empirical data are proposed for probabilistic forecasting the characteristics of strong ground motions (SGM) from the earthquakes, potentially dangerous for the territory of the Republic of North Ossetia–Alania. We consider the models of SGM characteristics that are most important in the engineering practice (macroseismic intensities of ground shaking, peak ground accelerations, periods, durations, spectra, and strong-motion accelerograms) in the vicinity of the sources of earthquakes of different magnitudes and at different distances from the sources in application to the seismogeological conditions of the study region. The models are developed using both the conventional statistical analysis of a large amount of data on instrumental recording and macroseismic description of the strong and perceivable earthquakes in the Caucasus and other seismically active regions of the world and a new method for reconstructing the spectra of the strong earthquakes from their macroseismic field. The cross-comparison of the estimates obtained based on the proposed models with each other and with the estimates obtained by the other authors has shown that they are fairly realistic and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abrahamson, N.A., State of the practice of seismic hazard evaluation, Proc. Int. Conf. on Geotechnical and Geological Eengineering “GeoEng 2000,” Melbourne, 2000, Lancaster: Technomic, 2000, vol. 1, pp. 659–685.

  2. Afanas’eva, V.V., Ontologiya nauchnoi neopredelennosti (Ontology of Scientific Uncertainty), Saratov: Nauka, 2008.

  3. Akkar, S, Sandikkaya, M.A., and Bommer, J.J., Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East, Bull. Earthquake Eng., 2014, vol. 12, no. 1, pp. 359–387. https://doi.org/10.1007/s10518-013-9461-4

    Article  Google Scholar 

  4. Ambraseys, N.N. and Bommer, J.J., The attenuation of ground accelerations in Europe, Earthquake Eng. Struct. Dyn., 1991, vol. 20, no. 12, pp. 1179–1202.

    Article  Google Scholar 

  5. Boore, D.M. and Atkinson, G.M., Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra, 2008, vol. 24, no. 1, pp. 99–138.

    Article  Google Scholar 

  6. Boore, D.M., Joyner, W.B., and Fumal, T.E., Estimation of Response Spectra and Peak Accelerations From Western North American Earthquake: An Interim Report, Part 2, U.S. Geological Survey Open-File Report, 1994, pp. 94–127.

  7. Bora, S.S., Cotton, F., and Scherbaum, F., NGA-West2 empirical Fourier and duration models to generate adjustable response spectra, Earthquake Spectra, 2019, vol. 35, no. 1, pp. 61–93.

    Article  Google Scholar 

  8. Budnitz, R.J., Apostolakis, G., Boore, D.M., Cluff, L.S., Coppersmith, K.J., Cornell, C.A., and Morris, P.A., Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, U.S. Nuclear Regulatory Commission Report NUREG/CR-6372, vol. 2, Washington: U.S. Nuclear Regulatory Commission, 1997.

  9. Campbell, K.W. and Bozorgnia, Y., Near-source attenuation of peak horizontal acceleration from worldwide accelerograms recorded from 1957 to 1993, Proc. 5th U. S. National Conf. on Earthquake Engineering, Chicago, 1994, Oakland: Earthquake Engineering Research Institute, 1994, vol. 3, pp. 283–292.

  10. Campbell, K.W. and Bozorgnia, Y., NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra at periods ranging from 0.1 s to 10.0 s, Earthquake Spectra, 2008, vol. 24, no. 1, pp. 139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  11. Chernov, Yu.K., Sil’nye dvizheniya grunta i kolichestvennaya otsenka seismicheskoi opasnosti territorii (Strong Ground Motions and Quantitative Assessment of Seismic Hazard of Territories), Tashkent: FAN, 1989.

  12. Chernov, Yu.K., Experience in refining the seismic hazard of individual territories in the Stavropol Krai with allowance for new SNiP requirements and world practice, Inzh.Geol., 2006, vol. 1, pp. 23–35.

    Google Scholar 

  13. Chernov, A.Yu., North Caucasian regional system of spectra of strong ground motions for antiseismic design and construction, Sb. nauchn. tr. VIII Mezhdun. nauchn. konf. studentov, aspirantov i molodykh uchenykh “Geografiya, geoekologiya, geologiya: opyt nauchnykh issledovanii v kontekste mezhdunarodnogo sotrudnichestva i integratsii”: Sektsiya “Aktual’nye voprosy fundamental’nykh i prikladnykh geologicheskikh issledovanii” (Collect. Pap.VIII Int. Sci. Conf. of Students, Postgraduates and Young Scientists “Geography, Geoecology, Geology: Research Experience in the Context of International Cooperation and Integratio,” Section “Topical Issues of Fundamental and Applied Research in Geology”), Dnepropetrovsk: Dnepropetr. Nats. Univ., 2011, pp. 60–61.

  14. Chernov, Yu.K., Reconstruction of the probable ground vibration spectra during strong earthquakes in the North Caucasus from their macroseismic field, in Geologo-geofizicheskie issledovaniya glubinnogo stroeniya Kavkaza. Geologiya i geofizika Kavkaza: sovremennye vyzovy i metody issledovanii (Geological-Geophysical Studies of the Deep Structure of the Caucasus. Geology and Geophysics of the Caucasus: Current Challenges and Study Methods), Zaalishvili, V.B., Ed., Vladikavkaz: GFI VNTs RAN, 2017, pp. 251–257.

  15. Chernov, Yu.K. and Chernov, A.Yu., Assessment of ground motion spectra during earthquakes from their macroseismic field for predicting the calculated seismic effects, Inzh.Geol., 2008, vol. 17, pp. 21–37.

    Google Scholar 

  16. Chernov, Yu.K. and Chernov, A.Yu., Probabilistic models of seismic effects for seismic hazard prediction in engineering purposes, Geol. Geofiz. Yuga Rossii, 2017, no. 2, pp. 116–128.

  17. Dagestanskoe zemletryasenie 14 maya 1970 g. Razrushitel’nye posledstviya. Inzhenernaya seismologiya. Voprosy seismostoikogo stroitel’stva (The Dagestan Earthquake on May 14, 1970 Devastating Consequences. Engineering Seismology. Seismic Construction Issues), Amirkhanov, Kh.I., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  18. Danciu, L., Kale, Ö., and Akkar, S., The 2014 earthquake model of the Middle East: ground motion model and uncertainties, Bull. Earthquake Eng., 2018, vol. 16, pp. 3497–3533. https://doi.org/10.1007/s10518-016-9989-1

    Article  Google Scholar 

  19. Delavaud, E., Cotton, F., Scherbaum, F., et al., Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe, J. Seismol., 2012, vol. 16, no. 3, pp. 451–473. https://doi.org/10.1007/s10950-012-9281-z

    Article  Google Scholar 

  20. Douglas, J., Consistency of ground-motion prediction from the past four decades, Bull. Earthquake Eng., 2010, vol. 8, no. 6, pp. 1515–1526. https://doi.org/10.1007/a10518-010-9195-5

    Article  Google Scholar 

  21. Douglas, J., Ground motion prediction equations 1964–2016. http://www.gmpe.org.uk. Cited as of January 1, 2017.

  22. Gedakyan, E.G., Golinskii, G.A., Papalishvili, V.G., Khrometskaya, E.A., and Shebalin, N.V., Spitak earthquake on December 7, 1988, isoseist maps, in Zemletryaseniya v SSSR v 1988 godu: Sb. nauchn. tr. (Earthquakes in the USSR in 1988: Collect. Pap.), Kondorskaya, N.V., Ed., Moscow: Nauka. 1991, pp. 74–84.

  23. Gusev, A.A. and Shumilina, L.S., Modeling the intensity-magnitude-distance relation based on the concept of an incoherent extended source, Volcanol.Seismol., 1999, vol. 21, pp. 443–463.

    Google Scholar 

  24. Jimenez, M.H., Garcia-Fernandez, M., and the GSHAP Ibero-Maghreb Collab., Seismic hazard assessment in the Ibero-Maghreb region, Ann. Geofis., 1999, vol. 42, no. 6, pp. 1057–1065.

    Google Scholar 

  25. Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiyskoi Federatsii OSR-97. Masshtab 1 : 8 000 000. Ob”yasnitel’naya zapiska i spisok gorodov i naselennykh punktov, raspolozhennykh v seysmoopasnykh raionakh (Set of General Seismic Zoning Maps of the Territory of the Russian Federation OSR-97. Scale 1 : 8 000 000. Explanatory Note and List of Cities and Towns Located in Earthquake-Prone Regions), Strakhov, V.N. and Ulomov, V.I., Eds., Moscow: OIFZ RAN, 1999.

    Google Scholar 

  26. Nikonov, A.A., Katalog oshchutimykh zemletryasenii Stavropol’skogo kraya (Catalog of Perceptible Earthquakes of Stavropol Krai), OIFZ RAN, 1995.

  27. Oskorbin, L.S. and Bobkov A.O., Macroseismic manifestation of earthquakes in the southern part of the Far East, in Geodinamika tektonosfery zony sochleneniya Tikhogo okeana s Evraziei, v 8-mi tomakh: Problemy seismicheskoi opasnosti Dal’nevostochnogo regiona, tom 4 (Geodynamics of Tectonosphere of the Pacific-Eurasia Conjunction Zone, vol. 4: Seismic Hazard Problems in the Far East Region), Yuzhno-Sakhalinsk: IMGiG DVO RAN, 1977. pp. 45–74.

  28. Rustanovich, D.N., Kolebaniya poverkhnosti zemli v epitsentral’nykh zonakh sil’nykh zemletryasenii (Oscillations of the Earth’s Surface in the Epicentral Zones of Strong Earthquakes), Moscow: Nauka, 1974.

  29. Salganik, M.P., Modeling of seismic impacts on building structures, Vopr. Inzh. Seismol., 1987, vol. 28, pp. 157–173.

    Google Scholar 

  30. Shebalin, N.V., Estimation of the size and position of the Spitak earthquake source from macroseismic data, Vopr. Inzh. Seismol., 1991, vol. 32, pp. 36–44.

    Google Scholar 

  31. Shteinberg, V.V., Saks, M.V., Aptikaev, F.F., et al., Methods for assessing seismic impacts: a manual, Vopr. Inzh. Seismol., 1993, vol. 34, pp. 5–94.

    Google Scholar 

  32. Sokolov, V.Yu., Ground acceleration spectra from Caucasus earthquakes, Izv. Phys. Solid Earth, 1998, vol. 34, no. 8, pp. 663–675.

    Google Scholar 

  33. Sokolov, V.Yu., Macroseismic intensity as a Fourier amplitude spectra: a tool to evaluate the regional and local peculiarities of the intensity distribution, Proc. 27th Gen. Assembly of European Seismological Commission (ESC), Lisbon, 2000, Lisbon: University Lisbon, pp. 373–377.

    Google Scholar 

  34. Sokolov, V.Yu., On the modelling of strong ground motion distribution in probabilistic seismic hazard assessment and loss estimation, Vopr. Inzh. Seismol., 2012, vol. 39, no. 2, pp. 5–22.

    Google Scholar 

  35. Sokolov, V. and Sahran, H.M., Generation of stochastic earthquake ground motion in western Saudi Arabia as f first step development of regional ground motion prediction model, Arabian J. Geosci., 2018, vol. 11, no. 2, article no. 38. https://doi.org/10.1007/s12517-018-3394-9

    Article  Google Scholar 

  36. Svod pravil SP 14.13330.2018: Stroitel’stvo v seismicheskikh raionakh. Aktualizirovannaya redaktsiya SNiP II-7-81* (Code of Regulations SP 14.13330.2018: Construction in Seismic Regions, Updated Edition of SNiP (Construction Standards and Regulations) II-7-81*), Moscow: AO NITs “Stroitel’stvo”–TsNIISK im. V.A.Kucherenko, 2018a.

  37. Svod pravil SP 408.1325800.2018: Detal’noe seismicheskoe raionirovanie i seismomikroraionirovanie dlya territorial’nogo planirovaniya (Code of Regulations SP 408.1325800.2018: Detailed Seismic Zoning and Seismic Microzoning for Territorial Planning), Moscow: AO NITs “Stroitel’stvo”–TsNIISK im. V.A.Kucherenko, 2018b.

  38. Tatevossian, R.E., Albini, P., Camassi, R., Mokrushyina, N.G., Shebalin, N.V., and Petrossyan, A.E, Analyzing and improving supporting dataset of the Akhalkalak, December 31, 1899. earthquake, in Historical and Prehistorical Earthquakes in the Caucasus: Proc. NATO Advanced Research Workshop held in Yerevan, Armenia, 11–15 July,1996, Giadini, D. and Balassanian, S., Eds., Dordrecht: Kluwer, 1997, pp. 383–400.

  39. The Global Seismic Hazard Assessment Program (GSHAP) 1992–1999, Summary Volume, Ann. Geofis., 1999, vol. 42, no. 6, pp. 1–1232.

  40. Vanmarcke, E.H., Structural response to earthquakes, in Seismic Risk and Engineering Decisions, Lomnitz, C. and Rosenbleuth, E., Eds., Amsterdam: Elsevier, 1976, pp. 287–338.

    Google Scholar 

  41. Zaalishvili, V. and Chernov, Yu.K., Methodology of detailed assessment of the seismic hazard of The Republic of North Ossetia-Alania, Open Constr. Build. Technol. J., 2018, vol. 12, pp. 309–318. https://doi.org/10.2174/1874836801812010309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. K. Chernov or V. B. Zaalishvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, Y.K., Zaalishvili, V.B. & Chernov, A.Y. Strong Ground Motion Simulation for Forecasting the Probable Seismic Impacts in the Territory of the Republic of North Ossetia–Alania. Izv., Phys. Solid Earth 56, 644–655 (2020). https://doi.org/10.1134/S1069351320050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050018

Keywords:

Navigation