Skip to main content
Log in

Near Islands Aleutian Earthquake with MW = 7.8 on July 17, 2017: I. Extended Rupture along the Commander Block of the Aleutian Island Arc from Observations in Kamchatka

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The largest instrumentally recorded regional back-arc earthquake with MW = 7.8, MC = 8.2 occurred on July 17, 2017 on the Bering transform fault (the boundary between the Beringia minor lithospheric plate and the Komandorskii (Commander) block of the Aleutian island arc). This seismic event, called the Near Islands earthquake or Near Islands Aleutian earthquake, caused the ground to shake with intensity I = 5–6 on Bering Island and a small tsunami wave on the Near Islands. The specific aspects of the peculiarities of the pattern of seismicity of the northwestern segment of the Aleutian arc and the tectonic position of the Near Island Aleutian earthquake, the details of its prompt processing, macroseismic manifestations, analysis results of ground motion peak amplitudes, focal mechanisms, and earthquake source models are discussed. The coseismic displacements according to the GNSS data are presented. It is concluded that the source of the Near Islands Aleutian earthquake did not fill the seismic gap near the Commander Islands, and the possibility of the strongest earthquake hitting the northwestern part of the Aleutian arc remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. GNSS (Global Navigation Satellite Systems) is the common name for satellite navigation systems.

  2. Kamchatka Branch of Federal Research Center Geophysical Survey of Russian Academy of Sciences, Seismological Data Information System, regional catalog of Kamchatka and Commander Islands. http://www.emsd.ru/sdis/earthquake/catalogue/ catalogue.php

  3. Information centers: MOS: Federal Research Center Geophysical Survey of Russian Academy of Sciences, Obninsk (www.gsras.ru); NEIС: National Earthquake Information Center, U.S. Geological Survey https://earthquake.usgs.gov/earthquakes/search/; ISC: Bulletin of the International Seismological Centre. ftp://ftp.isc.ac.uk/pub/isf/catalogue/ ISC-GEM: Global Instrumental Earthquake Catalogue (1904–2014). http://www.isc.ac.uk/iscgem/index.php IDC: International Data Centre, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), Vienna, Austria (www.ctbto.org).

  4. GCMT is the Global CMT Project (www.globalcmt.org).

  5. Broadband seismic station networks: IRIS: Global Seismograph Network GSN–IRIS/USGS (https://doi.org/10.7914/SN/IU); ARN: Alaska Regional Network (https://doi.org/10.7914/SN/AK); JP: Japan Meteorological Agency Seismic Network (http:// www.fdsn.org/networks/detail/JP/).

  6. http://ds.iris.edu/wilber3/

  7. USGS, Earthquake Hazards Program, 2004. M 9.1 off the west coast of northern Sumatra. https://earthquake.usgs.gov/earthquakes/eventpage/official20041226005853450_30#executive; https://earthquake.usgs.gov/archive/product/poster/20041226/ us/1457989040172/poster.pdf

  8. http://www.tsunami.gov/events/PAAQ/2017/07/17/ot9dh6/2/ WEAK51/WEAK51.txt

  9. http://www.ndbc.noaa.gov/download_data.php?filename= 21415t2017.txt.gz&dir=data/historical/dart/

  10. https://earthquake.usgs.gov/earthquakes/eventpage/us20009x 42#finite-fault

  11. http://rses.anu.edu.au/seismology/ak135/ak135f.html

  12. Lay et al. (2017) also used the GNSS data from the BRNG station pertaining to the KB GS RAS GNSS network.

REFERENCES

  1. Abubakirov, I.R., Pavlov, V.M., and Titkov, N.N., The Mechanism of the deep-focus, Sea of Okhotsk earthquake of May 24, 2013 as inferred from static displacements and broadband seismograms, J. Volcanol. Seismol., 2015, vol. 9, no. 4, pp. 242–257.

    Article  Google Scholar 

  2. Argus, D.F. and Gordon, R.G., No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 1991, vol. 18, pp. 2039–2042. https://doi.org/10.1029/91GL01532

    Article  Google Scholar 

  3. Balakina, L.M. and Moskvina, A.G., Characterization of the seismogenic process in the Aleutian Island Arc: I. Source relations of the large earthquakes of 1957, 1986, and 1996 in the Andreanof Islands, Izv., Phys. Solid Earth, 2008, vol. 44, no. 8, pp. 631–659.

    Article  Google Scholar 

  4. Balakina, L.M. and Moskvina, A.G., Characterization of the seismogenic process in the Aleutian Island Arc: II. The large earthquakes of February 4, 1965, and November 17, 2003, in the Rat Islands, Izv., Phys. Solid Earth, 2009, vol. 45, no. 3, pp. 199–224.

    Article  Google Scholar 

  5. Balakina, L.M. and Moskvina, A.G., Characterization of the seismogenic process in the Aleutian Island Arc: III. Earthquakes at the western and eastern margins of the Arc, Izv., Phys. Solid Earth, 2010a, vol. 46, no. 4, pp. 281–305.

    Article  Google Scholar 

  6. Balakina, L.M. and Moskvina, A.G., The tsunamigenic earthquake of April 1, 1946, in the Fox Islands (Aleutian Island Arc), Izv., Phys. Solid Earth, 2010b, vol. 46, no. 6, pp. 493–506.

    Article  Google Scholar 

  7. Chebrov, V.N., Droznin, D.V., Kugaenko, Yu.A., Levina, V.I., Senyukov, S.L., Sergeev, V.A., Shevchenko, Yu.V., and Yashchuk, V.V., The system of detailed seismological observations in Kamchatka in 2011, J. Volcanol. Seismol., 2013, vol. 7, no. 1, pp. 16–36.

    Article  Google Scholar 

  8. Chebrov, D.V., Droznina, S.Ya., Senyukov, S.L., Shev-chenko, Yu.V., and Mityushkina, S.V., Kamchatka and Commander Islands, in Zemletryaseniya Rossii v 2015 godu (Earthquakes in Russia in 2015), Obninsk: GS RAN, 2017a, pp. 67–73.

  9. Chebrov, D.V., Kugaenko, Yu.A., Abubakirov, I.R., Lander, A.V., Pavlov, V.M., Saltykov, V.A., and Titkov, N.N., The July 17th, 2017 M W = 7.8 earthquake at the boundary of the Commander seismic breach (western part of the Aleutian Arc), Vestn. KRAUNTs, 2017b, vol. 35, no. 3, pp. 22–25.

    Google Scholar 

  10. Cross, R.S. and Freymueller, J.T., Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and Western Alaska, J. Geophys. Res., 2008, vol. 113, p. B07405. https://doi.org/10.1029/2007JB005136

    Google Scholar 

  11. Droznin, D.V., Chebrov, D.V., Droznina, S.Ya., and Ototyuk, D.A., Automated estimation of instrumental seismic intensity in soft real time and use it within the service of urgent seismic reports in Kamchatka, Seism. Prib., 2017, vol. 53, no. 3, pp. 5–19.

    Google Scholar 

  12. Ekstrom, G., Stein, R.S., Eaton, J.P., and Eberhart-Phillips, D., Seismicity and geometry of a 110-km-long blind thrust fault: 1. The 1985 Kettleman Hills, California, earthquake, J. Geophys. Res., 1992, vol. 97, pp. 4843–4864.

    Article  Google Scholar 

  13. Ekstrom, G., Nettles, M., and Dziewonski, A.M., The global CMT project 2004–2010: centroid-moment tensors for 13017 earthquakes, Phys. Earth Planet. Inter., 2012, vol. 200, pp. 1–9.

    Article  Google Scholar 

  14. Fedotov, S.A., Energeticheskaya klassifikatsiya Kurilo-Kamchatskikh zemletryasenii i problema magnitud (Energy Classification of the Kuril-Kamchatka Earthquakes and the Problem of Magnitudes), Moscow: Nauka, 1972.

  15. Fukushima, Y. and Tanaka, T., The revision of “A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan,” Fall Meeting of The Seismological Society of Japan, Abstracts, 1992, p. B18.

  16. Gaedicke, C., Baranov, B., Seliverstov, N., Alexeiev, D., Tsukanov, N., and Freitag, R., Structure of an active arc-continent collision area: the Aleutian-Kamchatka junction, Tectonophysics, 2000, vol. 325, no. 1, pp. 63–85.

    Article  Google Scholar 

  17. Geist, E.L., Childs, J.R., and Scholl, D.W., The origin of summit basins of the Aleutian Ridge: implications for block rotation of an arc massif, Tectonics, 1988, vol. 7, pp. 327–341.

    Article  Google Scholar 

  18. Gordeev, E.I., Pinegina, T.K., Lander, A.V., and Kozhurin, A.I., Beringia: seismic hazard and fundamental problems of geotectonics, Izv., Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 512–521.

    Article  Google Scholar 

  19. Gusyakov, V.K., Ground zero: megaearthquakes pose main threat to the safety of coastlines, Sci. First Hand, 2018, vol. 50, nos. 2–3.

  20. Herring, T.A., King, R.W., and McClusky, S.C., GAMIT: GPS Analysis at MIT. Release 10.4, Massachusetts: Institute of Technology, 2010.

    Google Scholar 

  21. Kanamori, H. and Anderson, D.L., Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 1975, vol. 65, no. 5, pp.1073–1095.

    Google Scholar 

  22. Kogan, M.G., Frolov, D.I., Vasilenko, N.F., Freymueller, J.T., Steblov, G.M., Ekström, G., Titkov, N.N., and Prytkov, A.S., Plate coupling and strain in the far western Aleutian arc modeled from GPS data, Geophys. Res. Lett., 2017, vol. 44, pp. 3176–3183.

    Article  Google Scholar 

  23. Lallemant, H.G.A. and Oldow, J.S., Active displacement partitioning and arc-parallel extension of the Aleutian volcanic arc based on Global Positioning System geodesy and kinematic analysis, Geology, 2000, vol. 28, no. 8, pp. 739–742.

    Article  Google Scholar 

  24. Lander, A.V., Bukchin, B.G., Droznin, D.V., and Kiryushin, A.V., Tectonic position and source parameters of the Khailin (Koryak) earthquake of March 8, 1991: does the Beringia plate exist?, in Vychislitel’naya seismologiya (Computational Seismology), vol. 26, Moscow: Nauka, 1994, pp. 103–122.

  25. Lander, A.V., Levin, V.E., and Titkov, N.N., Present-day movements of the Commander microplate from seismological and GPS data, Vulkanizm i geodinamika: materialy IV Vserossiiskogo simpoziuma po vulkanologii i paleovulkanologii (Volcanism and Geodynamics: Proc. IV All-Russian Symp. on Volcanol. Paleovolcanol.), Petropavlovsk-Kamchatskii, 2009, pp. 621–624.

  26. Lay, T., Ye, L., Bai, Ye., Cheung, K.F., Kanamori, H., Freymueller, J., Steblov, G.M., and Kogan, M.G., Rupture along 400 km of the Bering Fracture Zone in the Komandorsky Islands earthquake (M W 7.8) of 17 July 2017, Geophys. Res. Lett., 2017, vol. 44, no. 24, pp. 12161–12169. https://doi.org/10.1002/2017GL076148

    Article  Google Scholar 

  27. Levin, V.E., Bakhtiarov, V.F., Pavlov, V.M., Titkov, N.N., and Serovetnikov, S.S., Geodynamic studies of the April 20(21), 2006 Olyutorskoe earthquake based on observations by the Kamchatka GPS network, J. Volcanol. Seismol., 2010, vol. 4, no. 3, pp. 193–202.

    Article  Google Scholar 

  28. Levin, V.E., Bakhtiarov, V.F., Titkov, N.N., Serovetnikov, S.S., Maguskin, M.A., and Lander, A.V., Monitoring and studying the present-day movements of the Earth’s crust in Kamchatka, in Seismologicheskie i geofizicheskie issledovaniya na Kamchatke (Seismological and Geophysical Studies in Kamchatka), Petropavlovk-Kamchatskii: Novaya kniga, 2012, pp. 188–210.

  29. Lobkovsky, L.I., Baranov, B.V., Dozorova, K.A., Mazova, R.Kh., Kisel’man, B.A., and Baranova, N.A., The Komandor seismic gap: earthquake prediction and tsunami computation, Oceanology, 2014, vol. 54, no. 4, pp. 519–531.

    Article  Google Scholar 

  30. Mackey, K.G., Fujita, K., Gunbina, L.V., Kovalev, V.N., Imaev, V.S., Kozmin, B.M., and Imaeva, L.P., Seismicity of the Bering Strait region: evidence for a Bering block, Geology, 1997, vol. 25, no. 11, pp. 979–982.

    Article  Google Scholar 

  31. Mazova, R.K., Baranov, B.V., Lobkovsky, L.I., Baranova, N.A., Dozorova, K.A., and Chaykina, O.N., Numerical model study of tsunami generated by potential earthquake within the Komandorsky seisnic gap in the western Aleutian Island Arc, Sci. Tsunami Hazards, 2013, vol. 32, no. 3, pp. 131–155.

    Google Scholar 

  32. McCaffrey, R., Oblique plate convergence, slip vectors, and forearc deformation, J. Geophys. Res., 1992, vol. 97, no. B6, pp. 8905–8915. https://doi.org/10.1029/92jb00483

    Article  Google Scholar 

  33. McCann, W., Nishenko, S.P., Sykes, L.R., and Krause, J., Seismic gaps and plate boundaries: seismic potential for major boundaries, Pure Appl. Geophys., 1979, vol. 117, pp. 1082–1147.

    Article  Google Scholar 

  34. Medvedev, S.V., Sponheyer, W., and Kárník, V., Shkala seismicheskoi intensivnosti MSK-64 (Macroseismic Intensity Scale MSK-64), Moscow: MGK AN SSSR, 1965.

  35. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 1985, vol. 75, no. 4, pp. 1135–1154.

    Google Scholar 

  36. Papazachos, B.C., Scordilis, E.M., Panagiotopoulos, D.G., Papazachos, C.B., and Karakaisis, G.F., Global relations between seismic fault parameters and momernt magnitude of earthquakes, Bull. Geol. Soc. Greece, 2004, vol. 34, pp. 1483–1489.

    Google Scholar 

  37. Pavlov, V.M. and Abubakirov, I.R., The algorithm for calculating the seismic moment tensor of strong earthquakes from regional broadband seismograms of body waves, Vestnik KRAUNTs. Nauki Zemle, 2012, vol. 20, no. 2, pp. 149–158.

    Google Scholar 

  38. Ruppert, N.A., Lees, J.M., and Kozyreva, N.P., Seismicity, earthquakes and structure along the Alaska-Aleutian and Kamchatka-Kurile subduction zones: a review, in Volcanism and Subduction: The Kamchatka Region, AGU Geophysical Monograph Series, 2007, vol. 172, pp. 129–144.

    Google Scholar 

  39. Ryan, H.F. and Scholl, D.W., Geologic implications of great interplate earthquakes along the Aleutian Arc, J. Geophys. Res., 1993, vol. 98, no. B12, pp. 22135–22146. https://doi.org/10.1029/93jb02451

    Article  Google Scholar 

  40. Seliverstov, N.I., Stroenie dna prikamchatskikh akvatorii i geodinamika zony sochleneniya Kurilo-Kamchatskoi i Aleutskoi ostrovnykh dug (The Seafloor Structure in the Region of Kamchatka and the Geodynamics of the Junction zone of the Kuril-Kamchatka and Aleutian Island Arcs), Moscow: Nauchnyi mir, 1998.

  41. Sykes, L.R., Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and Aleutians, J. Geophys. Res., 1971, vol. 76, no. 32, pp. 8021–8041.

    Article  Google Scholar 

  42. Thingbaijam, K.K.S., Mai, M.P., and Goda, K., New empirical earthquake source-scaling laws, Bull. Seismol. Soc. Am., 2017, vol. 107, no. 5, pp. 2225–2246.

    Article  Google Scholar 

  43. Toda, S., Stein, R.S., Sevilgen, V., and Lin, J., Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide, U.S. Geological Survey Open-File Report 2011-1060. http://pubs.usgs.gov/of/2011/1060/.

  44. Wells, D.L. and Coppersmith, K.J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 4, pp. 974–1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kugaenko.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebrov, D.V., Kugaenko, Y.A., Lander, A.V. et al. Near Islands Aleutian Earthquake with MW = 7.8 on July 17, 2017: I. Extended Rupture along the Commander Block of the Aleutian Island Arc from Observations in Kamchatka. Izv., Phys. Solid Earth 55, 576–599 (2019). https://doi.org/10.1134/S1069351319040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351319040037

Keywords:

Navigation