Skip to main content
Log in

Characteristics of a Dynamic System of Geophysical Fields on Different Time Scales

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The paper presents the results of estimating the parameters of the dynamic systems of observed variations in different types of geophysical fields based on the data obtained by American geophysicists at the Plate Boundary Observatory (PBO) (Parkfield, California) project. It is shown that the estimates of a dynamic system’s dimension, correlation entropy, and correlation dimension depend on the time scale on which the variations are considered. The representation of a sequence of earthquakes in the form of a continuous time series made it possible to estimate the parameters of a dynamic system that forms the observed variations. Together with analyzing the characteristics of the dynamic systems of geophysical fields in a wide range of time scales, the variability of these characteristics at different observation points is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Anishchenko, V.S., Astakhov, V.V., Vadivasova, T.E., Neiman, A.B., Strelkova, G.I., and Shimanskii-Gaier, L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh (Nonlinear Effects in Chaotic and Stochastic Systems), Moscow–Izhevsk: Inst. komp’yut. issled., 2003.

  2. Bakun, W.H. and Lindh, A.G., The Parkfield, California, earthquake prediction experiment, Science, 1985, vol. 229, pp. 619–624.

    Article  Google Scholar 

  3. Chelidze, T. and Matcharashvili, T., Complexity of seismic process; measuring and applications—a review, Tectonophysics, 2007, vol. 431, pp. 49–60.

    Article  Google Scholar 

  4. Cherepantsev, A.S., Determination of the phase projection of a dynamic system from strain field observations, Izv., Phys. Solid Earth, 2008a, vol. 44, no. 2, pp. 119–137.

    Article  Google Scholar 

  5. Cherepantsev, A.S., Extraction of a dynamic component from variations in geophysical fields using the convergence of a sample average, Izv., Phys. Solid Earth, 2008b, vol. 44, no. 11, pp. 883–897.

    Article  Google Scholar 

  6. Cherepantsev, A.S., Effect of filtering in dynamic system parameters estimation, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2012, vol. 20, no. 6, pp. 47–55.

    Google Scholar 

  7. Cherepantsev, A.S., Parameters of the response of the volumetric strain field to the external acting processes, Izv., Phys. Solid Earth, 2013, vol. 49, no. 6, pp. 796–812.

    Article  Google Scholar 

  8. Cherepantsev, A.S., Characteristics and properties of dynamic system in the dissipative Olami-Feder-Christensen earthquake model, Fiz. Mezomekh., 2015, vol. 18, no. 6, pp. 86–97.

    Google Scholar 

  9. Cherepantsev, A.S., The time variations in the parameters of the volumetric strain response to the tidal and baric impacts, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 590–605.

    Article  Google Scholar 

  10. Feldstein, A. and Tyupkin, Y., Correlation dimension of the strange attractor for geomagnetic field variations, in Nonlinear Dynamics and Predictability of Geophysical Phenomena, vol. 83 of Geophysical Monograph Series, Newman, W., Gabrielov, A., and Turcotte, D., Eds., Washington: AGU, 1994, pp. 103–107.

  11. Grassberger, P. and Procaccia, I., On the characterization of strange attractors, Phys. Rev. Lett., 1983, vol. 50, pp. 346–349.

    Article  Google Scholar 

  12. Henderson, J.R., Barton, D.J., and Foulger, G.R., Fractal clustering of induced seismicity in the Geysers geothermal area, California, Geophys. J. Int., 1999, vol. 139, pp. 317–324.

    Article  Google Scholar 

  13. Hirata, T., A correlation between the b-value and the fractal dimension of earthquakes, J. Geophys. Res., 1989, vol. 94, pp. 7507–7514.

    Article  Google Scholar 

  14. Keilis-Borok, V.I., Kossobokov, V.G., and Mazhkenov, S.A., On similarity in spatial distribution of seismicity, Vychislit. Seismol., 1989, no. 22, pp. 28–40.

  15. Li, Q. and Nyland, E., Is the dynamics of the lithosphere chaotic ?. in Nonlinear Dynamics and Predictability of Geophysical Phenomena, vol. 83 of Geophysical Monograph Series, Newman, W., Gabrielov, A., and Turcotte, D., Eds., Washington: AGU, 1994, pp. 37–41.

  16. Mikhailov, V.O., Nazaryan, A.N., Smirnov, V.B., Diament, M., Shapiro, N.M., Kiseleva, E.A., Tikhotskii, S.A., Polyakov, S.A., Smol’yaninova, E.I., and Timoshkina, E.P., Joint inversion of the differential satellite interferometry and GPS data: a case study of Altai (Chuia) earthquake of September 27, 2003, Izv., Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 91–103.

    Article  Google Scholar 

  17. Murray, J., Segall, P., Cervelli, P., Prescott, W., and Svare, J., Inversion of GPS data for spatially variable slip-rate on the San Andreas Fault near Parkfield, Geophys. Res. Lett., 2001, vol. 28, pp. 359–362.

    Article  Google Scholar 

  18. Olami, Z., Feder, H., and Christensen, K., Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys.Rev. Lett., 1992, vol. 68, pp. 1244–1247.

    Article  Google Scholar 

  19. Prescott, W., Hodgkinson, K., Neuhauser, D., Silverman, S., Stites, P., and Zuzlewski, S., Access to strain and other low frequency geophysical observations, EarthScope Workshop: Making and Breaking a Continent, Snowbird, Utah, 2001.

  20. Rykunov, L.N., Smirnov, V.B., Starovoit, Yu.O., and Chubarova, O.S., Self-similarity of seismic emissions over time, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 6, pp. 1337–1341.

    Google Scholar 

  21. Sadovskii, M.A. and Pisarenko, V.F., Seismicheskii protsess v blokovoi srede (Seismic Process in a Block Medium), Moscow: Nauka, 1991.

  22. Schuster, G., Deterministic Chaos: An Introduction, Weinheim: Physik, 1984.

    Google Scholar 

  23. Smirnov, V.B., Ponomarev, A.V., Qian Jiadong, and Cherepantsev, A.S., Rhythms and deterministic chaos in geophysical time series, Izv., Phys. Solid Earth, 2005, vol. 41, no. 6, pp. 428–448.

    Google Scholar 

  24. Sobolev, G.A., Osnovy prognoza zemletryasenii (Principles of Earthquake Prediction), Moscow: Nauka, 1993.

  25. Takens, F., Detecting strange attractors in turbulence, Lect. Notes Math., 1981, vol. 898, pp. 366–381.

    Article  Google Scholar 

  26. Wyss M., Sammis, C.G., Nadeau, R.M., and Weimer, S., Fractal dimension and b-value on creeping and locked patches of the San Andreas Fault near Parkfield, California, Bull. Seismol. Soc. Am., 2004, vol. 94, pp. 410–421.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The waveform data, metadata, and the data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi 10.7932/NCEDC.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 17-05-00185a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Cherepantsev.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepantsev, A.S. Characteristics of a Dynamic System of Geophysical Fields on Different Time Scales. Izv., Phys. Solid Earth 55, 403–419 (2019). https://doi.org/10.1134/S106935131903011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935131903011X

Keywords:

Navigation