Skip to main content
Log in

Geoinformatics and Systems Analysis in Geophysics and Geodynamics

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The application of geoinformatics and systems analysis methods for processing and interpreting geospatial data in geophysics and geodynamics is considered. The modern capabilities of observations with Global Navigational Satellite Systems as the main source of geospatial data are described. Achievements in the interpretation of geomagnetic data are presented and, in connection with this, some basic points of systems analysis are presented. The application of systems analysis in geophysics and geodynamics is illustrated by the approaches to estimating and forecasting the stability of the structural-tectonic blocks of the Earth’s crust for the geoecologically safe burial of high-level radioactive waste in the rocks of the Nizhne–Kanskii massif, Krasnoyarsk krai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., Astafieva, E.I., Gokhberg, M.B., Lapshin, V.M., Permyakova, V.E., Steblov, G.M., and Shalimov, S.L., Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999, California, Russ. J. Earth Sci., 2004, vol. 6, no. 5, pp. 339–354.

    Article  Google Scholar 

  2. Agayan, S.M., Bogoutdinov, Sh.R., and Krasnoperov, R.I., Short introduction into DMA, Russ. J. Earth Sci., 2018, vol. 18, no. 2, ES2001. doi https://doi.org/10.2205/2018ES000618

    Article  Google Scholar 

  3. Alpatov, V.V., Lapshin, V.B., Repin, A.Yu., and Tasenko, S.V., Prospects for the development of Hydromet radio tomography network. Geliogeofiz. Issled., 2013, no. 5, pp. 74–84.

  4. Altamimi, Z., Rebischung, P., Métivier, L., and Xavier, C., ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions, J. Geophys. Res. Solid Earth, 2016, p. 121. doi https://doi.org/10.1002/2016JB013098

  5. Anderson, E.B., Belov, S.V., Kamnev, E.N., Kolesnikov, I.Yu., Lobanov, N.F., Morozov, V.N., and Tatarinov, V.N., Podzemnaya izolyatsiya radioaktivnykh otkhodov (Underground Isolation of Radio Active Waste), Moscow: Gornaya kniga, 2011.

  6. Bock, Y., Kedar, Sh., Moore, A.W., Fang, P., Geng, J., Liu, Zh., Melgar, D., Owen, S.E., Squibb, M.B., and Webb, F., Twenty-two years of combined GPS products for geophysical applications and a decade of seismogeodesy, in International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), International Association of Geodesy Symposia, Cham: Springer International Publishing, Switzerland, 2016. doi https://doi.org/10.1007/1345_2015_220

  7. Buchanan, A., Finn, C.A., Love, J.J., Worthington, E.W., Lawson, F., Maus, S., Okewunmi, S., and Poedjono, B., Geomagnetic referencing—the real-time compass for directional drillers, Oilfield Rev., 2013, vol. 25, no. 1, pp. 32–47.

    Google Scholar 

  8. Carter, B.A., Kellerman, A.C., Kane, T.A., Dyson, P.L., Norman, R., and Zhang, K., Ionospheric precursors to large earthquakes: a case study of the 2011 Japanese Tohoku earthquake, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 290–297. doi https://doi.org/10.1016/j.jastp.2013.06.006

    Article  Google Scholar 

  9. Chulliat, A. and Anisimov, S., The Borok INTERMAGNET magnetic observatory, Russ. J. Earth. Sci., 2008, vol. 10, ES3003. doi https://doi.org/10.2205/2007ES000238

    Article  Google Scholar 

  10. GFZ Helmholz Centre Potsdam, 2018. Indices of Global Geomagnetic Activity. http://www.gfz-potsdam.de/en/kp-index/. Cited June 20, 2018.

  11. Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The ionospheric response to the acoustic signal from submarine earthquakes according to the GPS data, Izv., Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 1–8.

    Article  Google Scholar 

  12. Gvishiani, A.D. and Lukianova, R.Yu., Geoinformatics and Observations of the Earth’s Magnetic Field: The Russian Segment, Izv., Phys. Solid Earth, 2015a, vol. 50, no. 2, pp. 157–175.

    Article  Google Scholar 

  13. Gvishiani, A.D. and Lukianova, R.Yu., Studying the geomagnetic field and accuracy problems of directional drilling in Arctic region, Gornyi Zh., 2015b, no. 10, pp. 94–99.

  14. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Mikhailov, V.O., and Tatarinov, V.N., Fuzzy sets algorithms of time-space analysis of geological, geophysical and geodynamic databases, II Int. Conf. “GIS in Geology,” Moscow: Vernadsky SGM RAS, 2004a, pp. 41–42.

  15. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Tikhotsky, S.A., Hinderer, J., Bonnin, J., and Diament, M., Algorithm FLARS and recognition of time series anomalies, Syst. Res. Inf. Technol., 2004b, no. 3, pp. 7–16.

  16. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Fuzzy recognition of anomalies in time series, Dokl. Earth Sci., 2008a, vol. 421, no. 5, pp. 838–842.

    Article  Google Scholar 

  17. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Zlotnicki, J., and Bonnin, J., Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series, Cybern. Syst. Anal., 2008b, vol. 44, no. 3, pp. 309–323.

    Article  Google Scholar 

  18. Gvishiani, A.D., Belov, S.V., Agayan, S.M., Rodkin, M.V., Morozov, V.N., Tatarinov, V.N., and Bogoutdinov, Sh.R., Geo-information technologies: artificial intelligence methods in the assessment of tectonic stability of Nizhnekanskii Massif, Inzh. Ekol., 2008c, no. 2, pp. 3–14.

  19. Gvishiani, A., Lukianova, R., Soloviev, An., and Khokhlov, A., Survey of geomagnetic observations made in the northern sector of Russia and new methods for analysing them, Surv. Geophys., 2014, vol. 35, no. 5, pp. 1123–1154. doi https://doi.org/10.1007/s10712-014-9297-8

    Article  Google Scholar 

  20. Gvishiani, A., Soloviev, A., Krasnoperov, R., and Lukianova, R., Automated hardware and software system for monitoring the Earth’s magnetic environment, Data Sci. J., 2016, vol. 15, no. 18, pp. 1–24. doi https://doi.org/10.5334/dsj-2016-018

    Article  Google Scholar 

  21. Gvishiani, A.D., Dzeboev, B.A., and Tatarinov, V.N., Algorithmic clustering in seismic hazard assessment for locating the nuclear fuel cycle facilities, Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Problemy i resheniya v ekologii gornogo dela” (Int. Scientific and Technology Conference “Problems and Solutions in the Ecology of Mining”), Moscow, 2017, pp. 42–48.

  22. Hernández-Pajares, M., Juan, J.M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S.C., and Krankowski, A., The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod., 2009, vol. 83, p. 263. /https://doi.org/10.1007/s00190-008-0266-1

    Article  Google Scholar 

  23. Hobiger, T. and Jakowski, J., Atmospheric signal propagation, in Springer Handbook of Global Navigation Satellite Systems, 2017. doi https://doi.org/10.1007/978-3-319-42928-1_6

  24. INTERMAGNET 2013. List of IMOs and responsible GINs. http://intermagnet.org/imos/imotblobs-eng.php.

  25. Jankowsky, J. and Sucksdorff, C., Guide for Magnetic Measurements and Observatory Practice, Warsaw: IAGA, 1996.

    Google Scholar 

  26. Jin, S. and Komjathy, A., GNSS reflectometry and remote sensing: new objectives and results, Adv. Space Res., 2010, vol. 46, pp. 111–117. doi https://doi.org/10.1016/j.asr.2010.01.014

    Article  Google Scholar 

  27. Kaftan, V.I. and Krasnoperov, R.I., Geodetic observations at geomagnetic observatories, Geomagn. Aeron., 2015, vol. 55, no. 1, pp. 118–123.

    Article  Google Scholar 

  28. Kaftan, V. and Melnikov, A., Local deformation precursors of large earthquakes derived from GNSS observation data, World Multidisciplinary Earth Sciences Symposium (WMESS 2017), IOP Conference Series: Earth and Environmental Science, 2017, vol. 95, p. 032030. doi https://doi.org/10.1088/1755-1315/95/3/032030

  29. Kaftan, V.I. and Melnikov, A.Yu., Revealing the deformational anomalies based on GNSS data in relation to the preparation and stress release of large earthquakes, Izv., Phys. Solid Earth, 2018, vol. 54, no. 1, pp. 22–32. doi https://doi.org/10.1134/S1069351318010093

    Article  Google Scholar 

  30. Kaftan, V.I. and Ustinov, A.V., The use of global navigation satellite systems for monitoring deformations of hydraulic structures, Gidrotekh. Stroit., 2012, no. 12, pp. 11–19.

  31. Kaftan, V.I. and Ustinov, A.V., Use of global navigation satellite systems for monitoring deformations of water-development works, Power Technol. Eng., 2013, vol. 47, no. 1, pp. 30–37.

    Article  Google Scholar 

  32. Kaftan, V.I., Krasnoperov, R.I., and Tertyshnikov, A.V., Observation with the use of global navigation satellite systems at GEOMAGNET stations and observatories: applied and fundamental aspects, Geliogeofiz. Issled., 2015, no. 12, pp. 1–10.

  33. Kaftan, V.I., Sidorov, V.A., and Ustinov, A.V., A comparative analysis of the accuracy attainable for the local monitoring of Earth’s surface movements and deformation using the GPS and GLONASS navigation satellite systems, J. Volcanol. Seismol., 2017, vol. 11, no. 3, pp. 217–224. doi https://doi.org/10.1134/S0742046317030034

    Article  Google Scholar 

  34. Krasnoperov, R.I., Sidorov, R.V., and Soloviev, A.A., Modern geodetic methods for high-accuracy survey coordination on the example of magnetic exploration, Geomagn. Aeron., 2015, vol. 55, no. 4, pp. 547–555. doi https://doi.org/10.1134/S0016793215040076

    Article  Google Scholar 

  35. Kusonskii, O.A., Geofizicheskie observatorskie issledovaniya na Urale (Geophysical Observatory Studies in the Urals), Yekaterinburg: RIO UrO RAN, 2012.

  36. Love, J.J., Magnetic monitoring of Earth and space, Phys. Today, 2008, vol. 61, no. 2, pp. 31–37. doi https://doi.org/10.1063/1.2883907

    Article  Google Scholar 

  37. Love, J.J. and Chulliat, A., An international network of magnetic observatories, EOS Trans. AGU, 2013, vol. 94, no. 42, pp. 373–374. doi https://doi.org/10.1002/2013EO420001

    Article  Google Scholar 

  38. Macmillan, S., Observatories, overview, in Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D., Herrero-Bervera, E., Eds., New York: Springer, 2007, pp. 708–710.

    Google Scholar 

  39. Mandea, M. and Papitashvili, V., Worldwide geomagnetic data collection and management. EOS, Trans., Am. Geophys. Union, 2009, vol. 90, no. 45, pp. 409–424. doi https://doi.org/10.1029/2009EO450001

    Article  Google Scholar 

  40. Matzka, J., Chulliat, A., Mandea, M., Finlay, C.C., and Qamili, E., Geomagnetic observations for main field studies: from ground to space, Space Sci. Rev., 2010, vol. 155, nos. 1–4, pp. 29–64. doi https://doi.org/10.1007/s11214-010-9693-4

    Article  Google Scholar 

  41. Morozov, V.N., Kolesnikov, I.Yu., and Tatarinov, V.N., Modeling the hazard levels of stress-strain state in structural blocks in Nizhnekanskii granitoid massif for selecting nuclear waste disposal sites, Water Resour., 2012, vol. 39, no. 7, pp. 756–769. http://link.springer.com/journal/ 11268#page-1. doi https://doi.org/10.1134/S009780781207007X

    Article  Google Scholar 

  42. Olsen, N., Friis-Christensen, E., Floberghagen, R., Alken, P., Beggan, C.D., Chulliat, A., Doornbos, E., da Encarnação, J.T., Hamilton, B., Hulot, G., van den Ijssel, J., Kuvshinov, A., Lesur, V., Lühr, H., Macmillan, S., et al., The Swarm satellite constellation application and research facility (SCARF) and Swarm data products, Earth Planets Space, 2013, vol. 65, no. 11, pp. 1189–1200. doi https://doi.org/10.5047/eps.2013.07.001

    Article  Google Scholar 

  43. Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Bykov, V.G., Gerasimenko, M.D., and Park, P.H., Studying far-field propagation of ionospheric disturbances generated by the Tohoku earthquake, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2016, vol. 13, no. 1, pp. 186–196.

  44. Pirjola, R., Geomagnetically induced currents as ground effects of space weather, in Space Science, Dr. Herman J. Mosquera Cuesta, Ed., InTech, 2012.

  45. Quade, E.S., Analysis for Military Decisions, Chicago: Rand McNally and Co., 1964.

    Google Scholar 

  46. Reay, J., Herzog, D., Sobhana, A., Kharin, E., McLean, S., Nose, M., and Sergeyeva, N., Magnetic observatory data and metadata: types and availability, in Geomagnetic Observations and Models, Mandea, M. and Korte, M., Eds., Dordrecht: Springer, 2011, pp. 149–181. doi https://doi.org/10.1007/978-90-481-9858-0

    Google Scholar 

  47. Roberts, F.S., What is big data and how has it changed?, Book of Abstracts of the Int. Conf. “Data Intensive System Analysis for Geohazard Studies,” Sochi region, Mountain cluster, Russia, July 18—21, 2016, BS4002. doi https://doi.org/10.2205/2016BS01Sochi

  48. Sapunov, V.A., Denisov, A.Y., Saveliev, D.V., Khomutov, S.Y., Borodin, P.B., Narkhov, E.D., and Shirokov, A.N., New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support, Magn. Reson. Solids. Electronic J., 2016, vol. 18, no. 2, 16209.

    Google Scholar 

  49. Sidorov, R., Soloviev, A., Krasnoperov, R., Kudin, D., Grudnev, A., Kopytenko, Y., Kotikov, A., and Sergushin, P., Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification, Geosci. Instrum., Methods Data Syst., 2017, vol. 6, no. 2, pp. 473–485. doi https://doi.org/10.5194/gi-6-473-2017

    Article  Google Scholar 

  50. Soloviev, An., Chulliat, A., Bogoutdinov, S., Gvishiani, A., Agayan, S., Peltier, A., and Heumez, B., Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory, Earth Planets Space, 2012a, vol. 64, no. 9, pp. 743–752. doi https://doi.org/10.5047/eps.2012.03.004

    Article  Google Scholar 

  51. Soloviev, A.A., Khokhlov, A.V., Jalkovsky, E.A., Berezko, A.E., Lebedev, A.Yu., Kharin, E.P., Shestopalov, I.P., Mandea, M., Kuznetsov, V.D., Bondar, T.N., Nechitailenko, V.A., Rybkina, A.I., Pyatygina, O.O., and Shibaeva, A.A., Atlas magnitnogo polya Zemli (The Atlas of the Earth’s Magnetic Field), Gvishiani, A.D., Frolov, A.V., and Lapshin, V.B., Eds., Moscow: GC RAS, 2012b. doi https://doi.org/10.2205/2012Atlas_MPZ

    Google Scholar 

  52. Soloviev, A., Agayan, S., and Bogoutdinov, S., Estimation of geomagnetic activity using measure of anomalousness, Ann. Geophys., 2016a, vol. 59, no. 6. doi https://doi.org/10.4401/ag-7116

  53. Soloviev, A.A., Sidorov, R.V., Krasnoperov, R.I., Grudnev, A.A., and Khokhlov, A.V., Klimovskaya: a new geomagnetic observatory, Geomagn. Aeron., 2016b, vol. 56, no. 3, pp. 352–354. doi https://doi.org/10.1134/S0016793216030154

    Article  Google Scholar 

  54. Steblov, G.M. and Starovoit, O.E., North Eurasia GPS deformation array (NEDA), Proc. Int. Seminar on the Use of Space Techniques for Asia–Pacific Regional Crustal Movements Studies, Irkutsk: August 5–10, 2002, Moscow: GEOS, 2002, pp. 85–96.

  55. St.-Louis, B., Sauter, E.A., Trigg, D.F., Coles, R.L., and Regimbald, D., INTERMAGNET Technical Reference Manual, Version 4.6, 2012, Edinburgh: INTERMAGNET, 2012.

    Google Scholar 

  56. Tatarinov, V.N., Geodynamic safety at nuclear fuel cycle facilities, Ispol’z. Okhr. Prir. Resur. Rossii, 2006, vol. 85, no. 1, pp. 46–51.

    Google Scholar 

  57. Tatarinov, V.N., Systems approach to assessing the geoecological safety of nuclear fuel cycle objects, Materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Prikladnye aspekty geologii, geofiziki i geoekologii s ispol’zovaniem sovremennykh geoinformatsionnykh tekhnologii” (Proc. IV Int. Scientific and Practical Conference “Applied Aspects of Geology, Geophysics and Geoecology using Modern Geoinformation Technologies”), Maikop: IP Kucherenko V.O., 2017, pp. 173–182.

  58. Tatarinov, V.N., Kaftan, V.I., and Seleev, V.N., Study of present-day geodynamics of the Nizhnekansk massif for safe disposal of radioactive waste, At. Energy, 2017, pp. 1–5.

  59. Zelinskiy, N.R., Kleimenova, N.G., Kozyreva, O.V., Agayan, S.M., Bogoutdinov, Sh.R., and Soloviev, A.A., Algorithm for recognizing Pc3 geomagnetic pulsations in 1‑s data from INTERMAGNET equatorial observatories, Izv., Phys. Solid Earth, 2014, vol. 50, no. 2, pp. 240–248.

    Article  Google Scholar 

  60. Zherebtsov, G.A., Ed., Institut solnechno-zemnoi fiziki: sozdanie i razvitie (Institute of Solar–Terrestrial Physics: The Creation and Development), Novosibirsk: SO RAN, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Gvishiani, V. I. Kaftan, R. I. Krasnoperov, V. N. Tatarinov or E. V. Vavilin.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvishiani, A.D., Kaftan, V.I., Krasnoperov, R.I. et al. Geoinformatics and Systems Analysis in Geophysics and Geodynamics. Izv., Phys. Solid Earth 55, 33–49 (2019). https://doi.org/10.1134/S1069351319010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351319010038

Navigation