Skip to main content
Log in

Mathematical Simulation of Convective Processes in the Liquid Core of the Earth and Implications for the Interpretation of Geomagnetic Field Variations in Polar Latitudes

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The flow structure induced by thermal convection in a rotating spherical shell with viscous boundary conditions is considered under the assumption that the differential rotation of the core relative to the mantle is absent. The radial, azimuthal, and meridional components of the flow’s velocity and helicity are studied. With the magnetic field assumed to be frozen into a liquid (frozen-flux hypothesis), it is shown that the numerical results fit the observations of the geomagnetic field variations close to the pole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abakumov, M.V., Construction of Godunov-type difference schemes in curvilinear coordinates and an application to spherical coordinates, Comput. Math. Model., 2015, vol. 26, no. 2, pp. 184–203.

    Article  Google Scholar 

  • Bloxham, J. and Gubbins, D., Thermal core-mantle interactions, Nature, 1987, vol. 325, pp. 511–513.

    Article  Google Scholar 

  • Chakravarthy, S.R. and Osher, S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, American Institute of Aeronautics and Astronautics (AIAA) Paper 85-0363, AIAA Meeting Papers, 23rd Aerospace Science Meeting (Reno, Nevada, 1985), 1985, pp. 1–11.

    Google Scholar 

  • Einfeldt, B., On Godunov-type methods for gas dynamics, Soc. Ind. Appl. Math. (SIAM) J. Numer. Anal., 1988, vol. 25, no. 2, pp. 294–318.

    Google Scholar 

  • Glatzmaier, G.A. and Roberts, P.H., A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 1995, vol. 337, pp. 203–209.

    Article  Google Scholar 

  • Godunov, S.K., Difference method for numerical calculation of discontinuous solutions of fluid dynamics, Mat. Sb., 1959, vol. 47 (89), no. 3, pp. 271–306.

    Google Scholar 

  • Godunov, S.K., Zabrodin, A.V., and Prokopov, G.P., A difference scheme for two-dimensional nonstationary problems of gas dynamics and flow calculation with a detached shock wave, Zh. Vychisl. Mat. Mat. Fiz., 1961, vol. 1, no. 6, pp. 1020–1050.

    Google Scholar 

  • Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N., Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 2002, vol. 416, no. 6881, pp. 620–623.

    Article  Google Scholar 

  • Johnson, C.L., Constable, C.G., and Tauxe, L., Mapping longterm changes in Earth’s magnetic field, Science, 2003, vol. 300, pp. 2044–2045.

    Article  Google Scholar 

  • Kochin, N.E., Vektornoe ischislenie i nachala tenzornogo ischisleniya (Vector Calculus and Basics of Tensor Calculus), Moscow: Nauka, 1965.

    Google Scholar 

  • Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. T. 6. Gidrodinamika. (Theoretical Physics, vol. 6: Fluid Mechanics) Moscow: Nauka, 1986.

    Google Scholar 

  • Laske, G. and Masters, G., Rotation of the inner core from a new analysis of free oscillations, Nature, 1999, vol. 402, pp. 66–69.

    Article  Google Scholar 

  • Livermore, P.W., Hollerbach, R., and Finlay, C.C., An accelerating high-latitude jet in Earth’s core, Nat. Geosci., 2016. doi 10.1038/NGEO2859

    Google Scholar 

  • Olson, P. and Aurnou, J., A polar vortex in the Earth’s core, Nature, 1999, vol. 402, pp. 170–173.

    Article  Google Scholar 

  • Reshetnyak, M.Yu. and Pavlov, V.E., Evolution of the dipole geomagnetic field. Observations and models, Geomagn. Aeron., 2016, vol. 56, no. 1, pp. 110–124.

    Article  Google Scholar 

  • Roe, P.L., Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., 1986, vol. 18, pp. 337–365.

    Article  Google Scholar 

  • Shalimov, S.L., Estimation of the Earth’s outer core ductility based on differential rotation of the mantle and the inner core, Geofiz. Issled., 2005, no. 2, pp. 129–132.

    Google Scholar 

  • Song, X. and Richards, P.G., Seismological evidence for differential rotation of the Earth’s inner core, Nature, 1996, vol. 382, pp. 221–224.

    Article  Google Scholar 

  • Vidale, J.E. and Earle, P.S., Fine-scale heterogeneity in the Earth’s inner core, Nature, 2000, vol. 404, pp. 273–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Abakumov.

Additional information

Original Russian Text © M.V. Abakumov, V.M. Chechetkin, S.L. Shalimov, 2018, published in Fizika Zemli, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abakumov, M.V., Chechetkin, V.M. & Shalimov, S.L. Mathematical Simulation of Convective Processes in the Liquid Core of the Earth and Implications for the Interpretation of Geomagnetic Field Variations in Polar Latitudes. Izv., Phys. Solid Earth 54, 466–473 (2018). https://doi.org/10.1134/S1069351318030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318030011

Navigation