Skip to main content
Log in

Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The results of the experimental studies on creating chemical and partial thermal remanent magnetizations (or their combination), which are imparted at the initial stage of the laboratory process of the oxidation of primary magmatic titanomagnetites (Tmts) contained in the rock, are presented. For creating chemical remanent magnetization, the samples of recently erupted Kamchatka basalts were subjected to 200-h annealing in air in the temperature interval from 400 to 500°С under the action of the magnetic field on the order of the Earth’s magnetic field. After creation of this magnetization, the laboratory modeling of the Thellier–Coe and Wilson–Burakov paleointensity determination procedures was conducted on these samples. It is shown that when the primary magnetization is chemical, created at the initial stage of oxidation, and the paleointensity determined by these techniques is underestimated by 15–20% relative to its true values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, T., Kinoshito, H., and Furuta, T., Electron microprobe study on processes of low-temperature oxidation of titanomagnetite, Mar. Geol., 1984, vol. 71, pp. 263–278.

    Google Scholar 

  • Alypova, O.M., Thermomagnetic studies of young volcanics of Kamchatka and some regularities in the variations of the magnetic characteristics as function of the composition and formation conditions of the rocks, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1969.

    Google Scholar 

  • Belokon’, V.I., Soppa, I.V., and Semkin, S.V., Formation of chemical remanent magnetization during the growth of spontaneous magnetization of reaction products, in Khimicheskaya namagnichennost’: teoriya i eksperiment. Sb. nauch. tr. (Chemical Magnetization: Theory and Experiment. Collection of Scientific Papers), Vladivostok: Dal’nevost. Univ., 1991, pp. 3–14.

    Google Scholar 

  • Borisova, G.P. and Sholpo, L.E., Chemical magnetization of titanomagnetite at the different stages of its formation, in in Khimicheskaya namagnichennost': teoriya i eksperiment. Sb. nauch. tr. (Chemical Magnetization: Theory and Experiment. Collection of Scientific Papers), Vladivostok: Dal’nevost. Univ., 1991, pp. 15–26.

    Google Scholar 

  • Bowles, J.A., Tatsumi-Petrochilos, L., Hammer, J.E., and Brachfeld, S.A., Multicomponent cubic oxide exsolution in synthetic basalts: temperature dependence and implications for magnetic properties, J. Geophys. Res., 2012, vol. 117, B03202. doi 10.1029/2011JB008867

    Article  Google Scholar 

  • Burakov, K.S., The method for determining the intensity of the geomagnetic field from the curves of thermal demagnetization Jn and Jrt, Materialy IXkonferentsii po voprosam postoyannogo geomagnitnogo polya, magnetizma gornykh porod i paleomagnetizma (Proc. IX Conf. on Constant Geomagnetic Field, Rock Magnetism, and Paleomagnetism), Baku, 1973, vol. 2, pp. 56–57.

    Google Scholar 

  • Coe, R.S., The determination of paleointensities of the Earth’s magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier method, J. Geomagn. Geoelectr., 1967, vol. 19, no. 3, pp. 157–179.

    Article  Google Scholar 

  • Coe, R.S., Gromme, C.S., and Mankinen, E.A., Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 1978, vol. 83, no. B4, pp. 1740–1756.

    Article  Google Scholar 

  • Day, R., Fuller, M., and Schmidt, V.A., Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 260–267.

    Article  Google Scholar 

  • Draeger, U., Prevot, M., Poidras, T., and Riisager, J., Single- domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophys. J. Int., 2006, vol. 166, no. 1, pp. 12–32.

    Article  Google Scholar 

  • Glevasskaya, A.M., Magnitnye mineraly i magnetizm vulkanitov (Magnetic Minerals and Magnetism of Volcanics), Kiev: Nauk. Dumka, 1983.

    Google Scholar 

  • Gribov, S.K., The processes of single phase oxidation and subsequent exsolution of titanomagnetites and their role in rock magnetism and paleomagnetism, Cand. Sci. (Phys.- Math.) Dissertation, Moscow: OIFZ RAN, 2004.

    Google Scholar 

  • Gribov, S.K. and Dolotov, A.V., To the influence of thermochemical magnetization of titanomagnetite-bearing basalts on the results of paleointensity determination by the Thellier technique, 15 mezhdunarodnaya konferentsiya “Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle,” materialy konferentsii (Proc. 15th Int. Conf. “Physicochemical and Petrophysical Studies in the Earth Science”), Moscow: IGEM RAN, 2014a, pp. 51–54.

    Google Scholar 

  • Gribov, S.K., Dolotov, A.V., and Tsel’movich, V.A., Peculiarities of magnetomineralogical transformation of natural titanomagnetites in air under isothermal conditions, Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2014b, vol. 156, book 1, pp. 64–78.

    Google Scholar 

  • Haggerty, S.E., Oxidation of opaque mineral oxides in basalts, in Oxide Minerals. Mineral. Soc. Am. Short Course Notes 3, Rumble D., Ed., Washington: Geol. Soc. Am., 1976a, pp. Hg1–Hg100.

    Google Scholar 

  • Haggerty, S.E., Opaque mineral oxides in terrestrial igneous rocks, in Oxide Minerals. Mineral. Soc. Am. Short Course Notes 3, Rumble D., Ed., Washington: Geol. Soc. Am., 1976b, pp. Hg101–Hg300.

    Google Scholar 

  • Haggerty, S.E., Oxide textures: a mini-atlas, in Oxide Minerals: Petrologic and Magnetic Significance, Lindsley, D.H., Ed., Reviews in Mineralogy Series, Washington: Mineral. Soc. Am., 1991, vol. 25, no. 1, pp. 129–219.

    Google Scholar 

  • Herrero-Bervera, E. and Valet, J.P., Testing determinations of absolute paleointensity from the 1955 and 1960 Hawaiian flows, Earth Planet. Sci. Lett., 2009, vol. 287, pp. 420–433.

    Article  Google Scholar 

  • Khokhlov, A.V. and Shcherbakov, V.P., Palaeointensity and Brunhes palaeomagnetic field models, Geophys. J. Int., 2015, vol. 202, no. 2, pp. 1419–1428.

    Article  Google Scholar 

  • Kissel, C. and Laj, C., Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores, Phys. Earth Planet. Inter., 2004, vol. 147, nos. 2–3, pp. 155–169.

    Article  Google Scholar 

  • Lindsley, D.H., Experimental studies of oxide minerals, in Oxide Minerals: Petrologic and Magnetic Significance, Lindsley, D.H., Ed., Reviews in Mineralogy Series, Washington: Mineral. Soc. Am., 1991, vol. 25, no. 1, pp. 69–106.

    Google Scholar 

  • Nagata, T., Arai, Y., and Momose, K., Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 1963, vol. 68, no. 18, pp. 5277–5281.

    Article  Google Scholar 

  • Nguen Tkhi Kim Tkhoa and Pecherskii, D., The signs of chemical magnetization of magnetite formed at titanomagnetite breakdown, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1987, no. 5, pp. 69–76.

    Google Scholar 

  • Nguyen, T.K.T. and Pechersky, D.M., Experimental study of chemical and crystallization remanent magnetizations in magnetite, Phys. Earth Planet. Inter., 1987, vol. 46, nos. 1–3, pp. 46–63.

    Article  Google Scholar 

  • Özdemir, O., Inversion of titanomaghemites, Phys. Earth Planet. Inter., 1987, vol. 46, pp. 184–196.

    Article  Google Scholar 

  • Petersen, N., Observation of shrinkage cracks in ocean floor titanomagnetites, Phys. Earth Planet. Inter., 1987, vol. 46, nos. 1–3, pp. 197–205.

    Article  Google Scholar 

  • Ramdohr, P., Die Erzmineralien ind ihre Verwachsungen, Berlin: Akad. Verlag, 1955

    Google Scholar 

  • Richards, J.C.W., O’Donovan, J.B., Hauptman, Z., O’Reilly, W., and Creer, K.M., A magnetic study of titanomagnetite substituted by magnesium and aluminium, Phys. Earth Planet. Inter., 1973, vol. 7, no. 4, pp. 437–444.

    Article  Google Scholar 

  • Selkin, P.A. and Tauxe, L., Long-term variations in palaeointensity, Philos. Trans. R. Soc. London A, 2000, vol. 358, no. 1768, pp. 1065–1088.

    Article  Google Scholar 

  • Shcherbakov, V.P., Khokhlov, A.V., and Sycheva, N.K., On the distribution function of the geomagnetic field intensity according to the model of a giant Gaussian process and empirical data, Izv., Phys. Solid Earth, 2015, no. 5, pp. 768–799.

    Google Scholar 

  • Skovorodkin, Yu.P., Studying the formation mechanism of remanent magnetization in lava flows, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1966.

    Google Scholar 

  • Smirnov, A.V. and Tarduno, J.A., Thermochemical remanent magnetization in Precambrian rocks: are we sure the geomagnetic field was weak?, J. Geophys. Res., 2005, vol. 110, B06103.

    Article  Google Scholar 

  • Thellier, E. and Thellier, O., Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 1959, vol. 15, pp. 285–376.

    Google Scholar 

  • Tucker, P. and O’Reilly, W., The laboratory simulation of deuteric oxidation of titanomagnetites: effect on magnetic properties and stability of thermoremanence, Phys. Earth. Planet. Inter., 1980, vol. 23, no. 2, pp. 112–133.

    Article  Google Scholar 

  • Wilson, R.L., The thermal demagnetization of natural magnetic moments in rocks, Geophys. J. R. Astron. Soc., 1961, vol. 5, no. 1, pp. 45–58.

    Article  Google Scholar 

  • Wilson, R.L., Palaeomagnetism and rock magnetism, Earth-Sci. Rev., 1966, vol. 1, nos. 2–3, pp. 175–212.

    Article  Google Scholar 

  • Yamamoto, Y., Tsunakawa, H., and Shibuya, H., Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities, Geophys. J. Int., 2003, vol. 153, no. 1, pp. 263–276.

    Article  Google Scholar 

  • Yamamoto, Y., Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe-Ti oxide, Earth Planets Space, 2006, vol. 58, pp. 1033–1044.

    Google Scholar 

  • Yamamoto, Y. and Hoshi, H., Paleomagnetic and rock magnetic studies of the Sakurajima 1914 and 1946 andesitic lavas from Japan: a comparison of the LTD-DHT Shaw and Thellier paleointensity methods, Phys. Earth. Planet. Inter., 2008, vol. 167, nos. 1–2, pp. 118–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Gribov.

Additional information

Original Russian Text © S.K. Gribov, A.V. Dolotov, V.P. Shcherbakov, 2017, published in Fizika Zemli, 2017, No. 2, pp. 109–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribov, S.K., Dolotov, A.V. & Shcherbakov, V.P. Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts. Izv., Phys. Solid Earth 53, 274–292 (2017). https://doi.org/10.1134/S1069351317010062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351317010062

Keywords

Navigation