Skip to main content
Log in

The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg–Richter law b-value parameter using the earthquake catalog of Greece

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg–Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970–2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011–2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970–2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5–1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle–ductile transition zone existing in the Earth’s crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, R.E. and Brune, J.N., Evidence for a constant b-value above magnitude 0 in the southern San Andreas, San Jacinto, and San Miguel fault zones and at the Long Valley caldera, California, Geophys. Res. Lett., 1994, vol. 21, no. 15, pp. 1647–1650.

    Google Scholar 

  • Abercrombie, R.E., Earthquake source scaling relationships from–1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res., 1995, vol. 100, pp. 24014–24036.

    Google Scholar 

  • Aki, K., Maximum likelihood estimate of b in the formula logN = a–b M and its confidence limits, Bull. Earthq. Res. Inst., 1965, vol. 43, pp. 237–239.

    Google Scholar 

  • D’Alessandro, A., Papanastassiou, D., and Baskoutas, I., Hellenic Unified Seismological Network: an evaluation of its performance through SNES method, Geophys J. Int., 2011, vol. 185, pp. 1417–1430.

    Article  Google Scholar 

  • Box, G.E.P. and Jenkins, G.M., Time Series Analysis: Forecasting and Control. San Francisco: Holden Day, 1970.

    Google Scholar 

  • Cao, A.M. and Gao, S.S., Temporal variations of seismic b-values beneath north eastern Japan island arc, Geophys. Rev. Lett., 2002, vol. 29, no. 9. doi 10.1029/2001GL013775

  • Chouliaras, G., Investigation of the earthquake catalog of the National Observatory of Athens, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, pp. 905–912.

    Article  Google Scholar 

  • Daub, E.G., Shelly, D.R., Guyer, R.A., and Johnson, P.A., Brittle and ductile friction and the physics of tectonic tremor, Geophys. Res. Lett., 2011, vol. 38, p. L10301. doi 10.1029/2011GL046866

    Article  Google Scholar 

  • Deshcherevskii, A.V. and Sidorin, A.Ya., Periodograms of superimposed epochs in search for hidden rhythms in experimental data time series, Seismic Instruments, 2012, vol. 48, no. 1, pp. 57–74.

    Article  Google Scholar 

  • Doglioni, C., Barba, S., Carminati, E., and Riguzzi, F., Role of the brittle-ductile transition on fault activation, Phys. Earth Planet. Inter., 2010, vol. 184, nos. 3–4, pp. 160–171.

    Google Scholar 

  • Dragoni, M., The brittle-ductile transition in tectonic boundary zones, Ann. Geofis., 1993, vol. 36, no. 2, pp. 37–44.

    Google Scholar 

  • Enescu, B. and Ito, K., Spatial analysis of the frequency–magnitude distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake, Earth Planets Space, 2002, vol. 54, pp. 847–859.

    Article  Google Scholar 

  • Gomberg, J., Seismicity and detection/location threshold in the southern Great Basin seismic network, J. Geophys. Res., 1991, vol. 96, pp. 401–414.

    Google Scholar 

  • Gutenberg, B. and Richter, Ch.F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 1944, vol. 34, pp. 185–188.

    Google Scholar 

  • Hatzidimitriou, P.M., Papadimitriou, E.E., Mountrakis, D.M., and Papazachos, B.C., The seismic parameter b of the frequency–magnitude relation and its association with the geological zones in the area of Greece, Tectonophysics, 1985, vol. 120, pp. 141–151.

    Article  Google Scholar 

  • Ishimoto, M. and Iida, K., Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthq. Res. Inst., 1939, vol. 17, pp. 443–478.

    Google Scholar 

  • Kijko, A. and Sellevoll, M.A., Estimation of earthquake hazard parameters from incomplete data files: 2. Incorporation of magnitude heterogeneity, Bull. Seism. Soc. Amer, 1992, vol. 82, no. 1, pp. 120–134.

    Google Scholar 

  • Lukk, A.A. and Popandopoulos, G.A., Reliability of determining the parameters of Gutenberg–Richter distribution for weak earthquakes in Garm, Tajikistan, Izv., Phys. Solid Earth, 2012, vol. 48, nos. 9–10, pp. 698–720.

    Article  Google Scholar 

  • Marzocchi, W. and Sandri, L., A review and new insights on the estimation of the b-value and its uncertainty, Ann. Geophys., 2003, vol. 46, pp. 1271–1282.

    Google Scholar 

  • Mignan, A., Functional shape of the earthquake frequency–magnitude distribution and completeness magnitude, J. Geophys. Res., 2012, vol. 117, B08302. doi 10.1029/ 2012JB009347

    Google Scholar 

  • Mignan, A. and Woessner, J., Estimating the magnitude of completeness for earthquake catalog. Community Online Resource for Statistical Seismicity Analysis, 2012. doi10.5078/crossa-00180805. Available at http://wwwcorssaorg

    Google Scholar 

  • Mignan, A. and Chouliaras, G., Fifty years of seismic network performance in Greece (1964–2013): spatiotemporal evolution of the completeness magnitude, Seismol. Res. Let, 2014, vol. 85, no. 3, pp. 657–667.

    Article  Google Scholar 

  • Mogi, K., Magnitude–frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthq. Res. Inst., 1962, vol. 40, pp. 831–853.

    Google Scholar 

  • Papanastassiou, D., Detection-location capability of the Hellenic Unified Seismological Network (HUSN) operating by the Institute of Geodynamics, National Observatory of Athens, Hellenic J. Geosci., 2011, vol. 45, pp. 209–2016.

    Google Scholar 

  • Papazachos, B.C., Seismicity of the Aegean and surrounding area, Tectonophysics, 1990, vol. 178, pp. 287–308.

    Article  Google Scholar 

  • Papazachos, B. and Papazachou, K., The Earthquakes of Greece, Thessaloniki: Ziti Editions, 1997.

    Google Scholar 

  • Papazachos, C., An alternative method for a reliable estimation of seismicity with an application in Greece and the surrounding area, Bull. Seismol. Soc. Am., 1999, vol. 89, no. 1, pp. 111–119.

    Google Scholar 

  • Pisarenko, V.F., On the recurrence law of the earthquakes, in Diskretnye svoistva geofizicheskoi sredy (Discrete Properties of the Geophysical Medium), Moscow: Nauka, 1989, pp. 47–60.

    Google Scholar 

  • Papadopoulos, G. and Baskoutas, I., New tool for the temporal variation analysis of seismic parameters, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, pp. 859–864. wwwnat-hazards-earth-syst-scinet/9/859/2009

    Article  Google Scholar 

  • Popandopoulos, G.A. and Baskoutas, I., Regularities in the time variations of seismic parameters and their implications for prediction of strong earthquakes in Greece, Izv., Phys. Solid Earth, 2011, vol. 47, no. 11, pp. 974–994.

    Article  Google Scholar 

  • Popandopoulos, G.A. and Lukk, A.A., The depth variations in the b-value of frequency–Magnitude Distribution of the Earthquakes in the Garm Region of Tajikistan, Fiz. Zemli, 2014, vol. 50, no. 2, pp. 273–288.

    Google Scholar 

  • Rydelek, P.A. and Sacks, I.S., Testing the completeness of earthquake catalogs and the hypothesis of self-similarity, Nature, 1989, vol. 337, pp. 251–253.

    Article  Google Scholar 

  • Sadovskii, M.A. and Pisarenko, V.F., Seismicheskii protsess v blokovoi srede (Seismic Process in a Block Medium), Moscow: Nauka, 1991.

    Google Scholar 

  • Sandri, L. and Marzocchi, W., A technical note on the bias in the estimation of the b-value and its uncertainty through the least squares technique, Ann. Geophys., 2007, vol. 50, no. 3, pp. 329–339.

    Google Scholar 

  • Scholz, C.H., The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 1968, vol. 58, pp. 399–415.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., and Wyss, M., Variations in earthquake-size distribution across different stress regimes, Nature Lett., 2005, vol. 437, pp. 539–542. doi: 10.1038/nature04094

    Article  Google Scholar 

  • Shi, Y. and Bolt, B.A., The standard error of the magnitude–frequency b value, Bull. Seismol. Soc. Am., 1982, vol. 72, pp. 1677–1687.

    Google Scholar 

  • Smirnov, V.B., Earthquake catalogs: evaluation of data completeness, Volkanol. Seismol., 1998, vol. 19, pp. 497–510.

    Google Scholar 

  • Smirnov, V.B., Prognostic anomalies of seismic regime: 1. Technique for preparation of original data, Geofiz. Issled., 2009, vol. 10, no. 2, pp. 7–22.

    Google Scholar 

  • Utsu, T., A statistical significance test of the difference in b value between two earthquake groups, J. Phys. Earth, 1966, vol. 14, pp. 37–40.

    Article  Google Scholar 

  • Utsu, T., Introduction to seismicity, Surijishingaku (Mathematical Seismology), Inst. Statis. Math., 1992, vol. 34, no. 7, pp. 139–157.

    Google Scholar 

  • Wiemer, S. and Benoit, J., Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones, Geophys. Res. Lett., 1996, vol. 23, pp. 1557–1560.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Mapping the frequency–magnitude distribution in asperities: an improved technique to calculate recurrence times?, J. Geophys. Res., 1997, vol. 102, pp. 15115–15128.

    Article  Google Scholar 

  • Wiemer, S., McNutt, S.R., and Wyss, M., Temporal and three-dimensional spatial analysis of the frequency–magnitude distribution near Long Valley caldera, California, Geophys. J. Int., 1998, vol. 134, pp. 409–421.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 2000, vol. 90, pp. 859–869.

    Article  Google Scholar 

  • Wiemer, S., A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 2001, vol. 72, pp. 373–382.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Mapping spatial variability of the frequency–magnitude distribution of earthquakes, Adv. Geophys., 2002, vol. 45, pp. 259–302.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Reply to “Comment on ‘Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan’ by Stefan Wiemer and Max Wyss”, Bull. Seismol. Soc. Am., 2003, vol. 93, pp. 1868–1871.

    Google Scholar 

  • Woessner, J. and Wiemer, S., Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am., 2005, vol. 95, pp. 684–698.

    Article  Google Scholar 

  • Wyss, M., Towards a physical understanding of the earthquake frequency distribution, Geophys. J. R. Astron. Soc., 1973, vol. 31, pp. 341–359.

    Article  Google Scholar 

  • Wyss, M., Pachiani, F., Deschamps, A., and Patau, G., Mean magnitude variations of earthquakes as a function of depth: different crustal stress distribution depending on tectonic setting, Geophys. Res. Lett., 2008, vol. 35, L01307. doi 10.1029/2007GL031057

    Article  Google Scholar 

  • Zavyalov, A.D., Srednesrochnyi prognoz zemletryasenii: osnovy, metodika, realizatsiya (Medium-Term Prediction of Earthquakes: Principles, Methods, and Implementation), Moscow: Nauka, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Popandopoulos.

Additional information

Original Russian Text © G.A. Popandopoulos, I. Baskoutas, E. Chatziioannou, 2016, published in Fizika Zemli, 2016, No. 2, pp. 45–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popandopoulos, G.A., Baskoutas, I. & Chatziioannou, E. The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg–Richter law b-value parameter using the earthquake catalog of Greece. Izv., Phys. Solid Earth 52, 195–209 (2016). https://doi.org/10.1134/S1069351316010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351316010079

keywords

Navigation