Skip to main content
Log in

Numerical model for the generation of the ensemble of lithospheric plates and their penetration through the 660-km boundary

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

In the kinematic theory of lithospheric plate tectonics, the position and parameters of the plates are predetermined in the initial and boundary conditions. However, in the self-consistent dynamical theory, the properties of the oceanic plates (just as the structure of the mantle convection) should automatically result from the solution of differential equations for energy, mass, and momentum transfer in viscous fluid. Here, the viscosity of the mantle material as a function of temperature, pressure, shear stress, and chemical composition should be taken from the data of laboratory experiments. The aim of this study is to reproduce the generation of the ensemble of the lithospheric plates and to trace their behavior inside the mantle by numerically solving the convection equations with minimum a priori data. The models demonstrate how the rigid lithosphere can break up into the separate plates that dive into the mantle, how the sizes and the number of the plates change during the evolution of the convection, and how the ridges and subduction zones may migrate in this case. The models also demonstrate how the plates may bend and break up when passing the depth boundary of 660 km and how the plates and plumes may affect the structure of the convection. In contrast to the models of convection without lithospheric plates or regional models, the structure of the mantle flows is for the first time calculated in the entire mantle with quite a few plates. This model shows that the mantle material is transported to the mid-oceanic ridges by asthenospheric flows induced by the subducting plates rather than by the main vertical ascending flows rising from the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarede, F. and van der Hilst, R.D., Zoned mantle convection, Philos. Trans. R. Soc. London, 2002, vol. A360, pp. 2569–2592.

    Article  Google Scholar 

  • Andrews, E. and Billen, M., Rheologic controls on the dynamics of slab detachment, Tectonophysics, 2009, vol. 464, pp. 60–69.

    Article  Google Scholar 

  • Becker, T., A numerical study on the effects of surface boundary condition and rheology on slab dynamics, Bollettino di Geofisica, 2008, vol. 49, pp. 177–182.

    Google Scholar 

  • Bercovici, D., Plate generation in a simple-model of lithosphere-mantle flow with dynamic self-lubrication, Tectonophysics, 1996, vol. 144, pp. 41–51.

    Google Scholar 

  • Bonnardot, M.-A., Hassani, R., and Tric, E., Numerical modelling of lithosphere-asthenosphere interaction in a subduction zone, Tectonophysics, 2008, vol. 272, pp. 698–708.

    Google Scholar 

  • Crameri, F., Tackley, P.J., Meilick, I., Gerya, T.V., and Kaus, B.J.P., A free plate surface and weak oceanic crust produce single-sided subduction on Earth, Geophys. Res. Lett., 2012, vol. 39, L03306. doi: 10.1029/2011GL050046

    Article  Google Scholar 

  • Evans, R.L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R., Geophysical evidence from the melt area for compositional controls on oceanic plates, Nature, 2005, vol. 437, pp. 249–252.

    Article  Google Scholar 

  • Foley, B.J. and Becker, T.W., Generation of plate-like behavior and mantle heterogeneity from a spherical, viscoplastic convection model, Geochem. Geophys. Geosyst., 2009, vol. 10, Q08001. doi: 10.1029/2009GC002378

    Google Scholar 

  • Gerya, T. and Stockhert, B., Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins, Int. J. Earth Sci. (Geologische Rundschau), 2006, vol. 95, pp. 250–274.

    Article  Google Scholar 

  • Gerya, T.V., Connolly, J.A.D., and Yuen, D.A., Why is terrestrial subduction one-sided?, Geology, 2008, vol. 36, pp. 43–46.

    Article  Google Scholar 

  • Grigne, C., Labrosse, S., and Tackley, P.J., Convection under a lid of finite conductivity: heat flux scaling and application to continents, J. Geophys. Res., 2007, vol. 112, p. B08402. doi: 10.1029/2005JB004192

    Google Scholar 

  • Hirth, G. and Kohlstedt, D.L., Water in the oceanic mantle: implications for rheology, melt extraction, and the evolution of the lithosphere, Earth Planet. Sci. Lett., 1996, vol. 144, pp. 93–108.

    Article  Google Scholar 

  • Hirth, G., Laboratory constraints on the rheology of the upper mantle, in: Plastic Deformation of Minerals and Rocks, Karato, S.I. and Wenk, H.R., Eds., Washington: Mineralogical Society of America, 2003, vol. 51, pp. 97–116.

    Google Scholar 

  • Karason, H. and van der Hilst, R.D., Constraints on mantle convection from seismic tomography, in The History and Dynamics of Global Plate Motion, Richards, M.R., Gordon, R., and van der Hilst, R.D., Eds., Washington: American Geophysical Union, 2000, vol. 121, pp. 277–288.

    Chapter  Google Scholar 

  • Karato, S., Deformation of Earth Materials, Cambridge: Cambridge Univ., 2008.

    Book  Google Scholar 

  • Kaus, B.J.P. and Becker, T.W., A numerical study on the effects of surface boundary condition and rheology on slab dynamics, Bollettino di Geofisica, 2008, vol. 49, pp. 177–182.

    Google Scholar 

  • Kneller, E., Keken, P., Karato, Sh., and Park, J., B-type olivine fabric in the mantle wedge: insights from high resolution non-newtonian subduction zone models, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 781–797.

    Article  Google Scholar 

  • Korenaga, J., Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics?, J. Geophys. Res., 2007, vol. 112, p. B05408. doi: 10.1029/2006JB004502

    Google Scholar 

  • Korenaga, J. and Karato, S., A new analysis of experimental data on olivine rheology, J. Geophys. Res., 2008, vol. 113, B02403. doi: 10.1029/2007JB005100

  • Korenaga, J., Scaling of plate tectonic convection with pseudoplastic rheology, J. Geophys. Res., 2010, vol. 115, B11405. doi: 10.1029/2010JB007670

    Article  Google Scholar 

  • Lay, Th., Hernlund, J., and Buffett, B., Core-mantle boundary heat flow, Nat. Geosci., 2008, vol. 1, pp. 25–32.

    Article  Google Scholar 

  • McNamara, A., Karato, Sh., and Keken, P., Localization of dislocation creep in the lower mantle: implication for the origin of seismic anisotropy, Earth Planet. Sci. Lett., 2001, vol. 191, pp. 85–99.

    Article  Google Scholar 

  • Moresi, L.N., Zhong, Sh., and Gurnis, M., The accuracy of finite elements of stokes’ flow with strong varying viscosity, Phys. Earth Planet. Inter., 1996, vol. 97, pp. 83–94.

    Article  Google Scholar 

  • Moresi, L.N. and Solomatov, V., Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 1998, vol. 133, pp. 669–682.

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T.H., and Lee, C., Episodic Precambrian subduction, Earth Planet Sci. Lett., 2007, vol. 262, pp. 552–562.

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., and Jellinek, A., Plate tectonics or not: lithospheric stress on terrestrial planets and super Earths, in Lunar Planet. Sci., 2008, vol. 38.

  • Parsons, B. and McKenzie, D., Mantle convection and the thermal structure of the plates, J. Geophys. Res., 1978, vol. 83, no. B9, pp. 4485–4496.

    Article  Google Scholar 

  • Paulson, A., Zhong, Sh., and Wahr, J., Modelling post-glacial rebound with lateral viscosity variations, Geophys. J. Int., 2005, vol. 163, pp. 357–371.

    Article  Google Scholar 

  • Petitjean, S., Rabinowicz, M., Gregoire, M., and Chevrot, S., Differences between Archean and Proterozoic lithospheres: assessment of the possible major role of thermal conductivity, Geochem. Geophys. Geosyst., 2006, vol. 7, pp. 1–26.

    Google Scholar 

  • Richards, M.A., Yang, W.S., Baumgardner, J.R., and Bunge, H.P., Role of a low viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology, Geochem. Geophys. Geosyst., 2001, vol. 2, no. 8, GC000115.

    Google Scholar 

  • Schubert, G., Turcotte, D.L., and Olson, P., Mantle Convection in the Earth and Planets, Cambridge: Cambridge Univ., 2001.

    Book  Google Scholar 

  • Stocker, R.L. and Ashby, M.F., On the rheology of the upper mantle, Rev. Geophys., 1977, vol. 11, pp. 391–426.

    Article  Google Scholar 

  • Tackley, P.J., Self-consistent generation of tectonic plates in three-dimensional mantle convection, Earth Planet. Sci. Lett., 1998, vol. 157, pp. 9–22.

    Article  Google Scholar 

  • Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 1. Pseudoplastic yielding, Geochem. Geophys. Geosyst., 2000a, vol. 1, p. 1021. doi: 10.1029/2000GC000036

    Google Scholar 

  • Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 2. Strain weakening and asthenosphere, Geochem. Geophys. Geosyst., 2000b, vol. 1, p. 1026. doi: 10.1029/2000GC000043

    Google Scholar 

  • Tagawa, M., Nakakuki, T., and Fumiko, T., Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone, Earth Planets Space, 2007, vol. 59, pp. 65–74.

    Article  Google Scholar 

  • Tan, E., Choi, E., Thoutireddy, P., Gurnis, M., and Aivazis, M., Geoframework: coupling multiple models of mantle convection within a computational framework, Geochem. Geophys. Geosyst., 2006, vol. 7, Q06001. doi: 10.1029/2005GC001155

    Google Scholar 

  • Tosi, N. and Yuen, D., Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity, Earth Planet. Sci. Lett., 2011, vol. 312, pp. 348–359.

    Article  Google Scholar 

  • Trompert, R. and Hansen, U., Mantle convection simulations with rheologies that generate platelike behavior, Nature, 1998, vol. 395, pp. 686–689.

    Article  Google Scholar 

  • Trubitsyn, V.P., Principles of the tectonics of floating continents, Izv., Phys. Solid Earth, 2000, vol. 36, no. 9, pp. 708–741.

    Google Scholar 

  • Trubitsyn, V.P. and Rykov, V.V., A numerical evolutionary model of interacting continents floating on a spherical Earth, Russ. J. Earth Sci., 2001, vol. 3, no. 2. doi: 20.2205/2001ES000057

    Google Scholar 

  • Trubitsyn, V.P., Mooney, W.D., and Abbott, D.A., Cool cratons and thermal blankets: how continents affect mantle convection, Int. Geol. Review, 2003, vol. 45, pp. 479–496.

    Article  Google Scholar 

  • Trubitsyn, V.P., Evolutionary models of floating continents, Russ. J. Earth Sci., 2004, vol. 6, no. 5. doi: 10.2205/2004ES000147

    Google Scholar 

  • Trubitsyn, V.P., The tectonics of floating continents, Herald Russ. Acad. Sci., 2005, no. 1, pp. 7–18.

    Google Scholar 

  • Trubitsyn, V.P., Geodynamic model of the evolution of the Pacific Ocean, Izv., Phys. Solid Earth, 2006, vol. 42, no. 2, pp. 93–114.

    Article  Google Scholar 

  • Trubitsyn, V., Kaban, M., Mooney, W., Reigber, Ch., and Schwintzer, P., Simulation of active tectonic processes for a convecting mantle with moving continents, Geophys. J. Int., 2006, vol. 164, pp. 611–623.

    Article  Google Scholar 

  • Trubitsyn, V.P., Seismic tomography and continental drift, Izv., Phys. Solid Earth, 2008, vol. 44, no. 11, pp. 857–872.

    Article  Google Scholar 

  • Trubitsyn, V.P., Evseev, A.N, Baranov, A.A., and Trubitsyn, A.P., Influence of an endothermic phase transition on mass transfer between the upper and the lower mantle, Izv., Phys. Solid Earth, 2008a, vol. 44, no. 6, pp. 443–456.

    Article  Google Scholar 

  • Trubitsyn, V.P., Evseev, A.N., Baranov, A.A., and Trubitsyn, A.P., Phase transition zone width implications for convection structure, Izv., Phys. Solid Earth, 2008b, vol. 44, no. 8, pp. 603–614.

    Article  Google Scholar 

  • Trubitsyn, V., Kaban, M., and Rothacher, M., Mechanical and thermal effects of floating continents on the global mantle convection, Phys. Earth Planet. Inter., 2008c, vol. 171, pp. 313–322.

    Article  Google Scholar 

  • Trubitsyn, V.P., Control gear for oceanic tectonic plates, Dokl. Earth Sci., 2010, vol. 434,part 1, pp. 1205–1207.

    Article  Google Scholar 

  • Trubitsyn, V.P., Rheology of the mantle and tectonics of the oceanic lithospheric plates, Izv., Phys. Solid Earth, 2012, vol. 48, no. 6, pp. 467–485.

    Article  Google Scholar 

  • Trubitsyn, V.P., Evseev, A.N, Evseev, M.N., and Evseeva, A.V., The structure of convection in the spherical mantle with internal heating, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 660–667.

    Article  Google Scholar 

  • Yoshida, M., Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere, Earth Planet. Sci. Lett., 2010, vol. 295, pp. 205–218.

    Article  Google Scholar 

  • Yoshida, M. and Santosh, M., Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models, Earth Sci. Rev., 2011a, vol. 105, pp. 1–24.

    Article  Google Scholar 

  • Yoshida, M. and Santosh, M., Future supercontinent assembled in the northern hemisphere, Terra Nova, 2011b, vol. 23, pp. 333–338.

    Article  Google Scholar 

  • Yoshida, M., Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: a three-dimensional numerical study, Tectonophysics, 2012, vols. 532–535, pp. 156–166.

    Article  Google Scholar 

  • Zhong, S., Zuber, M.T., Moresi, L.N., and Gurnis, M., The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 2000, vol. 105, pp. 11063–11082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Trubitsyn.

Additional information

Original Russian Text © V.P. Trubitsyn, A.P. Trubitsyn, 2014, published in Fizika Zemli, 2014, No. 6, pp. 138–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsyn, V.P., Trubitsyn, A.P. Numerical model for the generation of the ensemble of lithospheric plates and their penetration through the 660-km boundary. Izv., Phys. Solid Earth 50, 853–864 (2014). https://doi.org/10.1134/S106935131406010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935131406010X

Keywords

Navigation