Skip to main content
Log in

Simulation of Heat Propagation Processes in Thermoelectric Detection Pixels

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Processes of heat propagation in thermoelectric detection pixels that occur after absorption of UV single photons with the energy of 3.1–7.1 eV (400–175 nm) were studied by computer simulation method. Designs of detection pixels with a surface of 10 × 10 μm2, consisting of layers of the tungsten heat sink (W), the FeSb2 thermoelectric sensor, the W absorber, and the antireflective layer of SiO2, arranged in series on the sapphire substrate (Al2O3) are considered. Computer simulation was carried out based on the equation of heat propagation from a limited volume using a three-dimensional matrix method for differential equations. The temporal dependence of the temperature change in different areas of detection pixels is calculated for absorber thicknesses of 0.2–0.1 µm and sensor thicknesses 0.1–0.05 µm. The phonon and Johnson noise of the detection pixel SiO2/W/FeSb2/W/Al2O3 are estimated. It is shown that such detection pixels at the operating temperature of 9 K are capable to detect single photons in the UV region of the spectrum and provide a high signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chunnilall, C.J., Degiovanni, I.P., Kück, S., Müller, I., and Sinclair, A.G., Opt. Eng., 2014, vol. 53, p. 081910.

    Article  ADS  Google Scholar 

  2. Hadfield, R.H., Nat. Photon., 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  3. Dauler, E.A., Grein, M.E., Kerman, A.J., Marsili, F., Miki, S., Nam, S.W., Shaw, M.D., Terai, H., Verma, V.B., and Yamashita, T., Opt. Eng., 2014, vol. 53, p. 081907.

    Article  ADS  Google Scholar 

  4. Zadeh, I.E., Chang, J., Los, J.W.N., Gyger, S., Elshaari, A.W., Steinhauer, S., Dorenbos, S.N., and Zwiller V., Appl. Phys. Lett., 2021, vol. 118, p. 190502.

    Article  Google Scholar 

  5. Wollman, E.E., Verma, V.B., Beyer, A.D., Briggs, R.M., Korzh, B., Allmaras, J.P., Marsili, F., Lita, A.E., Mirin, R.P., Nam, S.W., and Shaw, M.D., Opt. Express, 2017, vol. 25, p. 26792.

    Article  ADS  Google Scholar 

  6. Hans, A., Schmidt, P., Ozga, C., Hartmann, G., Holzapfer, X., Ehresmann, A., and Knie, A., Materials (Basel), 2018, vol. 11, p. 869.

    Article  ADS  Google Scholar 

  7. Orlov, D.A., Glazenborg, R., Ortega, R., and Kernen, E., CEAS Space Journal, 2019, vol. 11, p. 405.

    Article  ADS  Google Scholar 

  8. van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Methods Phys. Res., 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  9. Kuzanyan, A.A. and Kuzanyan, A.S., Proc. SPIE, 2013, vol. 8773, p. 87730L.

    Article  ADS  Google Scholar 

  10. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys., 2018, vol. 53, p. 73.

    Article  Google Scholar 

  11. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens. J., 2019, vol. 20, p. 3040.

    Article  ADS  Google Scholar 

  12. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens. J., 2020, vol. 20, p. 12776.

    Article  ADS  Google Scholar 

  13. Johnson, D.G., Thermal Sensors, 2028, Editor: S. Liang, Comprehensive Remote Sensing, Elsevier, p. 376.

  14. Mather, J.C., Appl. Optics, 1982, vol. 21, p. 1125.

    Article  ADS  Google Scholar 

  15. Birkholz, U., Fettig, R., and Rosenzweig, J., Sensors and Actuators, 1987, vol. 12, p. 179.

    Article  Google Scholar 

  16. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys., 2018, vol. 53, p. 242.

    Article  Google Scholar 

  17. Gronbech, T.B.E., Tolborg, K., Svendsen, H., Overgaard, J., Chen, Y-S., and Iversen, B.B., Chem. Eur. J., 2020, vol. 26, no. 39, p. 8651.https://doi.org/10.1002/chem.202001643

    Article  Google Scholar 

  18. Du, Q., Wu, L., Cao, H., Kang, C-J., Nelson, C., Pascut, G.L., Besara, T., Siegrist, T., Haule, K., Kotliar, G., Zaliznyak, I., Zhu, Y., and Petrocich, C., Quantum Materials, 2021, vol. 6, p. 1.

    Article  Google Scholar 

  19. Li, M., Shen, H., Zhuang, L., Chen, D., and Liang, X., Int. J. Photoenergy, 2014, vol. 2014, id 670438.

  20. Werner, W.S.M., Glantschnig, K., and Ambrosch-Draxl, C., J. Phys Chem Ref. Data, 2009, vol. 38, p. 1013.

    Article  ADS  Google Scholar 

  21. Carini Jr., G., Carini, G., Cosio, D., D’Angelo, G., and Rossi, F., Philosophical Magazine, 2016, vol. 96, p. 761.

    Article  ADS  Google Scholar 

  22. https://nanoheat.stanford.edu/sites/default/files/publications/A33.pdf

  23. Figueira, M.S., Silva-Valencia, J., and Franco, R., Eur. Phys. J. B, 2012, vol. 85, p. 1.

    Article  Google Scholar 

  24. Bentien, A., Johnsen, S., Madsen, G.K.H., Iversen, B.B., and Steglich, F., Europhys. Lett., 2007, vol. 80, p. 17008.

    Article  ADS  Google Scholar 

  25. Waite, T. R., Craig, R. S., and Wallace, W. E., Phys. Rev. Lett., 1956, vol. 104, p. 1240.

    ADS  Google Scholar 

  26. http://www.efunda.com/materials/elements/TC_Table.cfm?Elment_ID=W

  27. Furukawa, G.T., Douglas, T.B., McCoskey, R.E., and Ginnings, D.C., J. Res. Nat. Bureau Stand., 1956. vol. 57, p. 67.

    Article  Google Scholar 

  28. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf

  29. Richards, P.L., J. Appl. Phys., 1994, vol. 76, p. 1.

    Article  ADS  Google Scholar 

  30. Desal, P.D., Chu, T.K., James, H.M., Ho, C.Y., J. Phys. Chem. Ref. Data, 1984, vol. 13, p. 1069.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.M. Gulian for his interest in the work and useful discussions.

Funding

This work was supported by the Science Committee of RA, in the frames of the research project no. 21T-1C088 “Sensor development of the thermoelectric single-photon detector for UV radiation taking into account thermal noise”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuzanyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A.S. Kuzanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Kuzanyan, A.S., Nikoghosyan, V.R. et al. Simulation of Heat Propagation Processes in Thermoelectric Detection Pixels. J. Contemp. Phys. 57, 280–288 (2022). https://doi.org/10.1134/S1068337222030100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337222030100

Keywords:

Navigation