Skip to main content
Log in

Investigation of the Supercritical CO2 Extracts of Wild Ledum Palustre L. (Rhododendron Tomentosum Harmaja) and Identification of Its Metabolites by Tandem Mass Spectrometry

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this research was to investigate and identify by tandem mass spectrometry the polyphenolic complexes and other biologically active compounds present in the leaves and stems of Ledum palustre L. Carbon dioxide, compressed to a supercritical state, was used for the most environmentally friendly extraction of polyphenolic complexes and other biologically active compounds from Ledum palustre L. The most effective extraction characteristics (pressure 350 bar, temperature 60°C, extraction time 1 h, co-solvent MeOH 3.5%) of supercritical CO2 extraction of L. palustre were determined empirically. To identify target analytes in the supercritical extracts, high performance liquid chromatography (HPLC) in combination with a BRUKER DALTONIKS ion trap was used. The results showed the presence of 61 biologically active compounds corresponding to the Rhododendron species, of which 32 were identified for the first time in L. palustre. These are flavanols dihydrokaempferol, quercetin arabinoside, myricetin galactoside; flavones diosmetin, nevadensin, cirsimaritin; flavanone naringenin; anthocyanins delphinidin, petunidin, cyanidin pentoside, delphinidin pentoside, peonidin 3-(6-O-acetyl) glucoside, peonidin-3-O-malonylglucoside, cyanidin-3-rutinoside, peonidin 3-O-glucoside; ellagic acid; lignan medioresinol; a type A procyanidin dimer; sterols fucosterol and avenasterol, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Poyarkova, A.I., in Flora of the USSR, Komarov, V.L., Ed., Moscow: Akad. Nauk SSSR, 1952, vol. 18, pp. 31–60.

  2. Arsen’ev, V.K., Across the Ussuri Krai: (Dersu Uzala). A Travel to the Sikhote-Alin’ Mountainous Region, Vladivostok: Ekho, 1921.

  3. Belousova, N.I., Khan, V.A., and Tkachev, A.V., Khim. Rast. Syr’ya, 1999, no. 3, pp. 5–38.

    Google Scholar 

  4. Okhlopkova, Zh.M. and Chirikova, N.K., Fundam. Res., 2012, no. 11, pp. 1334–1336.

    Google Scholar 

  5. Bukreeva, T.V., Shavarda, A.L., Matusevich, O.V., and Morozov, M.A., Rast. Resur., 2013, vol. 49, no. 2, pp. 395–403.

    Google Scholar 

  6. Ganina, M.M. and Popova, O.I., Khim. Farm. Zh., 2015, vol. 49, no. 4, pp. 33–35.

    Google Scholar 

  7. Podmaskin, V.V., Rossiya ATR, 2011, no. 1(71), pp. 107– 113.

    Google Scholar 

  8. Izotov, D.V., Essential Oils and Water-Oil Products of Species of the Genus Ledum L. Growing in the Far East, Cand. Sci. (Biol.) Dissertation, Dal’nevost. NauchnoIssled. Inst. Lesn. Khoz., Vladivostok, 2009.

  9. Korotaeva, M.S., Pharmacognostic Study of Four Species of the Genus Ledum L., Cand. Sci. (Biol.) Dissertation, Yaroslav. Gos. Med. Akad., Yaroslavl’, 2006.

  10. Plyashechnik, M.A., Khim. Rast. Syr’ya, 2012, no. 2, pp. 139–144.

    Google Scholar 

  11. Baldino, L. and Reverchon, E., J. Supercrit. Fluids, 2018, vol. 134, pp. 269–273. https://doi.org/10.1016/j.supflu.2017.11.034

    Article  CAS  Google Scholar 

  12. Popova, A.S., Ivakhnov, A.D., Skrebets, T.E., and Bogolitsyn, K.G., Khim. Rast. Syr’ya, 2018, no. 1, pp. 61–66. https://doi.org/10.14258/jcprm.2018012994

    Article  CAS  Google Scholar 

  13. Baananou, S., Bagdonaite, E., Marongiu, B., Piras, A., Porcedda, S., Falconieri, D., and Boughattas, N.A., Nat. Prod. Res., 2015, vol. 29 (11), pp. 999–1005. https://doi.org/10.1080/14786419.2014.965167

    Article  CAS  PubMed  Google Scholar 

  14. Razgonova, M.P., Zakharenko, A.M., Grudev, V., Ercisli, S., and Golokhvast, K.S., Molecules, 2020, vol. 25(17), p. 3774. https://doi.org/10.3390/molecules25173774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. State Pharmacopoeia of the Russian Federation, 14th ed., Moscow: Min. Zdravookhr. Ross. Fed., 2018, vols. 1–3.

  16. Abu-Reidah, I.M., Ali-Shtayeh, M.S., Jamous, R.M., Arraes-Roman, D., and Segura-Carretero, A., Food Chem., 2015, vol. 166, pp. 179–191. https://doi.org/10.1016/j.foodchem.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Goufo, P., Singh, R.K., and Cortez, I., Antioxidants, 2020, vol. 9, p. 398. https://doi.org/10.3390/antiox9050398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamed, A.R., El-Hawary, S.S., Ibrahim, R.M., Abdelmohsen, U.R., and El-Halawany, A.M., J. Chrom. Sci., 2021, vol. 59, pp. 618–626. https://doi.org/10.1093/chromsci/bmaa112

    Article  CAS  Google Scholar 

  19. Jaiswal, R., Jayasinghe, L., and Kuhnert, N., J. Mass Spectrom., 2012, vol. 47, pp. 502–515. https://doi.org/10.1002/jms.2954

    Article  CAS  PubMed  Google Scholar 

  20. Jin, C., Strembiski, W., Kulchytska, Y., Micetich, R.G., and Daneshtalab, M., DARU J. Pharm. Sci., 1999, vol. 7(4), pp. 5–8.

    CAS  Google Scholar 

  21. Li, X. and Tian, T., Front. Pharm., 2018, vol. 9, Article ID: 1067. https://doi.org/10.3389/fphar.2018.01067

  22. Llorent-Martinez, E.J., Spinola, V., Gouveia, S., and Castilho, P., Ind. Crops Prod., 2015, vol. 69, pp. 80–90. https://doi.org/10.1016/j.indcrop.2015.02.014

    Article  CAS  Google Scholar 

  23. Lommen, A., Godejohann, M., Venema, D.P., Hollman, P.C.H., and Spraul, M., Anal. Chem., 2000, vol. 72(8), pp. 1793–1797. https://doi.org/10.1021/ac9912303

    Article  CAS  PubMed  Google Scholar 

  24. Pandey, R. and Kumar, B., J. Liq. Chromatogr. Relat. Technol., 2016, vol. 39(4), pp. 225–238. https://doi.org/10.1080/10826076.2016.1148048

    Article  CAS  Google Scholar 

  25. Rodriguez-Perez, C., Gomez-Caravaca, A.M., GuerraHernandez, E., Cerretani, L., Garcia-Villanova, B., and Verardo, V., Food Res. Int., 2018, vol. 112, pp. 390–399. https://doi.org/10.1016/j.foodres.2018.06.060

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz, A., Hermosin-Gutierrez, I., Vergara, C., von Baer, D., Zapata, M., Hitschfild, A., Obando, L., and Mardones, C., Food Res. Int., 2013, vol. 51(2), pp. 706–713. https://doi.org/10.1016/j.foodres.2013.01.043

    Article  CAS  Google Scholar 

  27. Sun, J., Liu, X., Yang, T., Slovin, J., and Chen, P., Food Chem., 2014, vol. 146, pp. 289–298. https://doi.org/10.1016/j.foodchem.2013.2013.08.089

    Article  CAS  PubMed  Google Scholar 

  28. Sun, L., Tao, S., and Zhang, S., Molecules, 2019, vol. 24(1), p. 159. https://doi.org/10.3390/molecules24010159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vallverdu-Queralt, A., Jauregui, O., Medina-Remon, A., and Lamuela-Raventos, R.M., J. Agric. Food Chem., 2012, vol. 60(13), pp. 3373–3380. https://doi.org/10.1021/jf204702f

    Article  CAS  PubMed  Google Scholar 

  30. Viera, M.N., Winterhalter, P., and Jerz, G., Phytochem. Anal., 2016, vol. 27, pp. 116–125. https://doi.org/10.1002/pca.2606

    Article  CAS  Google Scholar 

  31. Wang, Z., Zhu, W., Liu, H., Wu, G., Song, M., Yang, B., Yang, D., Wang, Q., and Kuang, H., Molecules, 2018, vol. 23(9), p. 2285. https://doi.org/10.3390/molecules23092285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wojakowska, A., Perkowski, J., Goral, T., and Stobiecki, M., J. Mass. Spectrom., 2013, vol. 48, pp. 329–339. https://doi.org/10.1002/jms.3160

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, J., Wang, T., Li, P., Liu, R., Li, Q., and Bi, K., J. Chromatogr. B, 2016, vol. 1028, pp. 33–41. https://doi.org/10.1016/j.jchromb.2016.06.005

    Article  CAS  Google Scholar 

  34. Xu, L.L., Xu, J.J., Zhong, K.R., Shang, Z.P., Wang, F., Wang, R.F., and Liu, B., Molecules, 2017, vol. 22(10), p. 1756. https://doi.org/10.3390/molecules22101756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, S.T., Wu, X., Rui, W., Guo, J., and Feng, Y.E., Acta Chromatogr., 2015, vol. 27(4), pp. 711–728. https://doi.org/10.1556/achrom.27.2015.4.9

    Article  CAS  Google Scholar 

  36. Zakharenko, A.M., Razgonova, M.P., Pikula, K.S., and Golokhvast, K.S., Biochem. Res. Int., 2021, Article ID: 9957490. https://doi.org/10.1155/2021/9957490

  37. Zhang, Z., Jia, P., Zhang, X., Zhang, Q., Yang, H., Shi, H., and Zhang, L., J. Ethnopharmacol., 2014, vol. 158, pp. 66–75. https://doi.org/10.1016/j.jep.2014.10.022

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to manuscript preparation and participated in the discussions.

Corresponding author

Correspondence to M. P. Razgonova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razgonova, M.P., Zakharenko, A.M. & Golokhvast, K.S. Investigation of the Supercritical CO2 Extracts of Wild Ledum Palustre L. (Rhododendron Tomentosum Harmaja) and Identification of Its Metabolites by Tandem Mass Spectrometry. Russ J Bioorg Chem 49, 1645–1657 (2023). https://doi.org/10.1134/S1068162023070889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023070889

Keywords:

Navigation