Skip to main content
Log in

Isolation and Characterization of the Hemicelluloses Polysaccharides of Scots Pine (Pinus Sylvestris) Wood

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Many natural polysaccharides have biological activity, which allows them to be used for obtaining medicines. Development of new methods for the isolation of polysaccharides from plant materials, as well as investigation of their properties and structure constitute a topical task. In this study, polysaccharide galactoglucomannan (GGM) was isolated from pine wood for the first time by the peroxide delignification in the acetic acid-water medium in the presence of (NH4)6Mo7O24 catalyst. The GGM yield was 10.1 wt % of the wood sample and 58.1 wt % of the hemicelluloses content in the wood. Using 13C NMR method it was found that the degree of GGM acetylation was 0.23 with substitution at C2 and C3 atoms of the pyranose ring. According to the X-ray phase analysis data, GGM has an amorphous supramolecular structure. Polysaccharide glucoxylan (GX) was isolated by alkaline extraction from the cellulosic product of the peroxide delignification in a yield of 4.3 wt % of the wood sample and of 24.5 wt % of the hemicelluloses content in the wood. Glucoxylan does not contain acetyl groups (IR and NMR spectroscopy data); it has a crystalline supramolecular structure and is poorly soluble in water. The composition and structure of the isolated polysaccharides were studied by chemical analysis methods, as well as by IR spectroscopy, 1H, 13C, 2D HSQC NMR spectroscopy, gas chromatography, and X-ray phase analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Krasnoyarsk krai has reached a record level of timber harvesting. https://lpk-sibiri.ru/news/krasnoyarskij-kraj-dostig-rekordnogo-urovnya-obemov-lesozagotovok

  2. Sharkov, V.I. and Kuibina, N.I., Chem. Hemicelluloses, Moscow: Lesnaya Promyshlennost’, 1972.

  3. Abbou, A., Kadri, N., Debbache, N., Dairi, S., Remini, H., Dahmoune, F., Berkani, F., Adel, K., Belbahi, A., and Madani, K., Int. J. Biol. Macromol., 2019, vol. 141, pp. 663–670. https://doi.org/10.1016/j.ijbiomac.2019.08.266

    Article  CAS  PubMed  Google Scholar 

  4. Renaud, M., Belgacem, M.N., and Rinaudo, M., Polymer, 2005, vol. 46, no. 26, pp. 12348–12358. https://doi.org/10.1016/j.polymer.2005.10.019

    Article  CAS  Google Scholar 

  5. Kadri, N., Khettal, B., Adjebli, A., Cresteil, T., YahiaouiZaidi, R., Barragan-Montero, V., and Montero, J.-L., Ind. Crops Prod., 2014, vol. 54, pp. 6–12. https://doi.org/10.1016/J.INDCROP.2013.12.051

    Article  CAS  Google Scholar 

  6. Yong-Guang, B., Ding-Long, Y., Yu-min, L., and Min-xia, H., Energy Proced., 2012, vol. 17, pp. 1778–1785. https://doi.org/10.1016/J.EGYPRO.2012.02.311

    Article  Google Scholar 

  7. Junior, D.L., Ayoub, A., Venditti, R.A., Jameel, H., Colodette, J.L., and Hou-min, C., BioResources, 2013, vol. 8, no. 4, pp. 5319–5332.

    Google Scholar 

  8. Novozhilov, E.V. and Poshina, D.N., Khim. Rast. Syr’ya, 2011, no. 3, pp. 15–32.

    Google Scholar 

  9. Kuznetsov, B.N.,·Sudakova, I.G., Garyntseva, N.V., Levdansky, V.A., Ivanchenko, N.M., Pestunov, A.V., Djakovitch, L., and Pinel, C., Wood Sci. Technol., 2018, vol. 52, pp. 1377–1394. https://doi.org/10.1007/s00226-018-1029-7

    Article  CAS  Google Scholar 

  10. Kuznetsov, B.N., Levdansky, V.A., Kuznetsova, S.A., Garyntseva, N.V., Sudakova, I.G., and Levdansky, A.V., Eur. J. Wood Wood Prod., 2018, vol. 76, pp. 999–1007. https://doi.org/10.1007/s00107-017-1262-z

    Article  CAS  Google Scholar 

  11. Garyntseva, N.V., Sudakova, I.G., Kondrasenko, A.A., Skripnikov, A.M., Kuznetsov, B.N., Taran, O.P., and Agabekov, V.E., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 450–464. https://doi.org/10.17516/1998-2836-2015-8-3-450-464

    Article  Google Scholar 

  12. Chudina, A.I., Malyar, Yu.N., Sudakova, I.G., Kazachenko, A.S., Skripnikov, A.M., Borovkova, V.S., Kondrasenko, A.A., Mazurova, E.V., Fetisova, O.Yu., and Ivanov, I.P., Biomass Convers. Biorefin., 2021. https://doi.org/10.1007/s13399-021-01833-y

  13. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratory Works on Chemistry of Wood and Cellulose, Moscow: Ekologiya, 1991.

  14. ASTM D1105-96: Standard Test Method for Preparation of Extractive-Free Wood, 2013.

  15. Lundqvist, J., Teleman, A., Junel, L. Zacchi, G., Dahlman, O., Tjerneld, F., and Stalbrand, H., Carbohydr. Polym., 2002, vol. 48, pp. 29–39. https://doi.org/10.1016/S0144-8617(01)00210-7

    Article  CAS  Google Scholar 

  16. Xu, C., Leppänen, A.-S., Eklund, P., Holmlund, P., Sjöholm, R., Sundberg, K., and Willför, S., Carbohydr. Res., 2010, vol. 345, pp. 810–816. https://doi.org/10.1016/j.carres.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Matute, A.I., Hernández-Hernández, O., RodríguezSánchez, S., Sanz, M.L., and Martínez-Castro, I., J. Chromatogr. B, 2011, vol. 879, pp. 1226–1240. https://doi.org/10.1016/j.jchromb.2010.11.013

    Article  CAS  Google Scholar 

  18. Hu, L., Fang, X., Du, M., Luo, F., and Guo, Sh., Am. J. Plant Sci., 2020, vol. 11, pp. 2066–2079. https://doi.org/10.4236/ajps.2020.1112146

    Article  CAS  Google Scholar 

  19. Dudkin, M.S., Gromov, V.S., Vedernikov, N.A., and Katkevich, R.G., Hemicelluloses, Riga: Zinātne, 1991.

  20. Kac̆uráková, M., Capek, P., Sasinková, V., Wellner, N., and Ebringerová, A., Carbohydr. Polym., 2000, vol. 43, pp. 195–203. https://doi.org/10.1016/S0144-8617(00)00151-X

    Article  Google Scholar 

  21. Hong, T., Yin, J-Y., Nie, Sh.-P., and Xie, M.-Y., Food Chem.: X, 2021, vol. 12, Article ID: 100168. https://doi.org/10.1016/j.fochx.2021.100168

  22. Pawar, P.M.-A., Koutaniemi, S., Tenkanen, M., and Mellerowicz, E.J., Front. Plant Sci., 2013, vol. 4, Article ID: 118. https://doi.org/10.3389/fpls.2013.00118

  23. Hannuksela, T. and Penhoat, C.H., Carbohydr. Res., 2004, vol. 339, pp. 301–312. https://doi.org/10.1016/j.carres.2003.10.025

    Article  CAS  PubMed  Google Scholar 

  24. Capek, P., Alföldi, J., and Liskova, D., Carbohydr. Res., 2002, vol. 337, pp. 1033–1037. https://doi.org/10.1016/s0008-6215(02)00090-3

    Article  CAS  PubMed  Google Scholar 

  25. Muschin, T. and Yoshida, T., Carbohydr. Polym., 2012, vol. 87, pp. 1893–1898. https://doi.org/10.1016/j.carbpol.2011.08.059

    Article  CAS  Google Scholar 

  26. Hazendock, J.M., Reineink, E.J.M., Waard, P., and Dam, J.E.G., Carbohydr. Res., 1996, vol. 291, pp. 141–154.

    Article  Google Scholar 

  27. Vincent, P., Ham-Pichavant, F., Michaud, C., Mignani, G., Mastroianni, S., Cramail, H., and Grelier, S., Polymers, 2021, vol. 13, p. 2044. https://doi.org/10.3390/polym13132044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baath, J.A., Martinez-Abad, A., Berglund, J., Larsbrink, J., Vilaplana, F., and Olsson, L., Biotechnol. Biofuels, 2018, vol. 11, Article ID: 114. https://doi.org/10.1186/s13068-018-1115-y

  29. Mudgil, D., Barak, S., and Khatkar, B.S., Int. J. Biol. Macromol., 2012, vol. 50, pp. 1035–1039. https://doi.org/10.1016/j.ijbiomac.2012.02.031

    Article  CAS  PubMed  Google Scholar 

  30. Kazachenko, A.S., Malyar, Y.N., Vasilyeva, N.Y., Fetisova, O.Y., Chudina, A.I., Sudakova, I.G., Antonov, A.V., Borovkova, V.S., and Kuznetsova, S.A., Wood Sci. Technol., 2021, vol. 55, pp. 1091–1107. https://doi.org/10.1007/s00226-021-01299-1

    Article  CAS  Google Scholar 

  31. Zhang, M., Zhan, A., Ye, Y., Liu, C., Hang, F., Li, K., and Li, J., Carbohydr. Polym., 2021, vol. 269, Article ID: 118248. https://doi.org/10.1016/j.carbpol.2021.118248

Download references

Funding

This study was carried out within the framework of the State task of the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences (project no. 0287-2021-0017) with the use of equipment of the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to manuscript preparation and participated in the discussions.

Corresponding author

Correspondence to N. V. Garyntseva.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garyntseva, N.V., Levdansky, V.A., Kondrasenko, A.A. et al. Isolation and Characterization of the Hemicelluloses Polysaccharides of Scots Pine (Pinus Sylvestris) Wood. Russ J Bioorg Chem 49, 1596–1606 (2023). https://doi.org/10.1134/S1068162023070683

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023070683

Keywords:

Navigation