Skip to main content
Log in

Therapeutic Nucleic Acids Against Herpes Simplex Viruses (A Review)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The Herpes simplex virus (HSV) causes a wide range of diseases ranging from relatively mild primary skin lesions to severe and often fatal episodes of encephalitis. Currently, the most effective drugs for HSV-infected people are nucleoside analogs (e.g., acyclovir), which target enzymes encoded by viral DNA. The effectiveness of nucleoside analogs is reduced because of poor solubility in water, rapid intracellular catabolism, high cellular toxicity, and the appearance of resistant viral strains. Antisense technology, which exploits therapeutic nucleic acids (antisense oligonucleotides, their analogs, and siRNAs), seems to be a promising alternative antiviral therapy due to the high affinity of these agents to target nucleic acids, their high solubility in water, and low cytotoxicity. In the last decade, antisense oligonucleotides have been investigated as potential medicines for various diseases associated with harmful nucleic acids. Oligonucleotides with different chemical modifications targeted to specific regions of the HSV genome have shown effectiveness in suppressing the virus. siRNA-based agents have demonstrated prolonged and efficient (up to 99%) inhibition of HSV replication. The publications over the past 30 years considered in the review suggest the promising use of therapeutic nucleic acids to combat herpes viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Connolly, S.A., Jacksona, J.O., Jardetzkyb, T., and Longneckera, R., Nat. Rev. Microbiol., 2011, vol. 9, pp. 369–381. https://doi.org/10.1038/nrmicro2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crooke, R.M., Hoke, G.D., and Shoemaker, J.E., Antimicrob. Agents Chemother., 1992, vol. 36, pp. 527–532. https://doi.org/10.1128/AAC.36.3.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spear, P.G. and Longnecker, R., J. Virology, 2003, vol. 77, pp. 10179–10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization. Herpes simplex virus. https://www.who.int/ru/news-room/fact-sheets/detail/herpes-simplex-virus

  5. Knipe, D.M., Raja, P., and Lee, J.S., Proc. Nat. Acad. Sci. USA, 2015, vol. 112, pp. 11993–11994. https://doi.org/10.1073/pnas.1516224112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, S. and Viejo-Borbolla, A., Virulence, 2021, vol. 12, pp. 2670–2702. https://doi.org/10.1080/21505594.2021.1982373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGeoch, D.J., Rixon, F.J., and Davison, A.J., Virus Res., 2006, vol. 117, pp. 90–104. https://doi.org/10.1016/j.virusres.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Roizman, B., Knipe, D.M., and Whitley, R.J., Herpes Simplex Viruses. Fields Virology / Eds. Knipe D.M., Howley P.M. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2013.

  9. Sedlackova, L. and Rice, S.A., J. Virol., 2008, vol. 82, pp. 1268–1277. https://doi.org/10.1128/JVI.01588-07

    Article  CAS  Google Scholar 

  10. Peyman, A., Helsberg, M., Kretzschmar, G., Mag, M., Grabley, S., and Uhlmann, E., Biol. Chem. Hoppe Seyler., 1995, vol. 376, pp. 195–198. https://doi.org/10.1515/bchm3.1995.376.3.195

    Article  CAS  PubMed  Google Scholar 

  11. Field, H.J., J. Clin. Virol., 2001, vol. 21, pp. 261–269. https://doi.org/10.1016/s1386-6532(00)00169-4

    Article  CAS  PubMed  Google Scholar 

  12. Breeden, C.J., Hall, T.C., and Tyler, H.R., Ann. Intern. Med., 1966, vol. 65, pp. 1050–1056. https://doi.org/10.7326/0003-4819-65-5-1050

    Article  CAS  PubMed  Google Scholar 

  13. Shigeta, S., Mori, S., Kira, T., Takahashi, K., Kodama, E., Konno, K., Nagata, T., Kato, H., Wakayama, T., Koike, N., and Saneyoshi, M., Antivir. Chem. Chemother., 1999, vol. 10, pp. 195–209. https://doi.org/10.1177/095632029901000404

    Article  CAS  PubMed  Google Scholar 

  14. Chan, P.C., Wu, C.Y., Chang, W.Y., Chang, W.T., Alauddin, M., Liu, R.S., Lin, W.J., Chen, F.D., Chen, C.L., and Wang, H.E., Nucl. Med. Biol., 2011, vol. 38, pp. 987–995. https://doi.org/10.1016/j.nucmedbio.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Lalut, J., Tripoteau, L., Marty, C., Bares, H., Bourgougnon, N., and Felpin, F.X., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 7461–7464. https://doi.org/10.1016/j.bmcl.2012.10.047

    Article  CAS  PubMed  Google Scholar 

  16. Thomson, C. and Whitley, R., Adv. Exp. Med. Biol., 2011, vol. 697, pp. 221–230. https://doi.org/10.1007/978-1-4419-7185-2_15

    Article  Google Scholar 

  17. Chong, E.M., Wilhelmus, K.R., Matoba, A.Y., Jones, D.B., Coats, D.K., and Paysse, E.A., Am. J. Ophthalmol., 2004, vol. 138, pp. 474–475. https://doi.org/10.1016/j.ajo.2004.04.027

    Article  PubMed  Google Scholar 

  18. Elion, G.B., Am. J. Med., 1982, vol. 73, pp. 7–13. https://doi.org/10.1016/0002-9343(82)90055-9

    Article  CAS  PubMed  Google Scholar 

  19. Furman, P.A., St Clair, M.H., and Spector, T., J. Biol. Chem., 1984, vol. 259, pp. 9575–9579.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, D., Liu, Y., Zhang, F., You, Q., Ma, W., and Wu, J., Microbiol. Spectr., vol. 9, Article ID: e00646-21. https://doi.org/10.1128/Spectrum.00646-21

  21. Sadowski, L.A., Upadhyay, R., Greeley, Z.W., and Margulies, B.J., Viruses, 2021, vol. 13, Article ID: 1228. https://doi.org/10.3390/v13071228

  22. Lazarus, H.M., Belanger, R., Candoni, A., Aoun, M., Jurewicz, R., and Marks, L., Antimicrob. Agents Chemother., 1999, vol. 43, pp. 1192–1197. https://doi.org/10.1128/AAC.43.5.1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung, D. and Dorr, A., J. Clin. Pharmacol., 1999, vol. 39, pp. 800–804. https://doi.org/10.1177/00912709922008452

    Article  CAS  PubMed  Google Scholar 

  24. De Clercq, E., Andrei, G., Snoeck, R., De Bolle, L., Naesens, L., Degrève, B., Balzarini, J., Zhang, Y., Schols, D., Leyssen, P., Ying, C., and Neyts, J., Nucleosides Nucleotides Nucleic Acids, 2001, vol. 20, pp. 271–285. https://doi.org/10.1081/NCN-100002298

    Article  CAS  PubMed  Google Scholar 

  25. Birkmann, A. and Zimmermann, H., Curr. Opin. Virol., 2016, vol. 18, pp. 9–13. https://doi.org/10.1016/j.coviro.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Meier, P., Dautheville-Guibal, S., Ronco, P.M., and Rossert, J., Nephrol. Dial. Transplant., 2002, vol. 17, pp. 148–149. https://doi.org/10.1093/ndt/17.1.148

    Article  PubMed  Google Scholar 

  27. Ahmed, A., Infect. Disord. Drug Targets, 2011, vol. 11, pp. 475–503. https://doi.org/10.2174/187152611797636640

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths, P. and Lumley, S., Curr. Opin. Infect. Dis., 2014, vol. 27, pp. 554–559. https://doi.org/10.1097/QCO.0000000000000107

    Article  CAS  PubMed  Google Scholar 

  29. Aduma, P., Connelly, M.C., Srinivas, R.V., and Fridland, A., Mol. Pharmacol., 1995, vol. 47, pp. 816–822.

    CAS  PubMed  Google Scholar 

  30. Hagedorn, P.H., Yakimov, V., Ottosen, S., Kammler, S., Nielsen, N.F., Høg, A.M., Hedtjärn, M., Meldgaard, M., Møller, M.R., Orum, H., Koch, T., and Lindow, M., Nucleic Acid Ther., 2013, vol. 23, pp. 302–310. https://doi.org/10.1089/nat.2013.0436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mescalchin, A. and Restle, T., Molecules, 2011, vol. 16, pp. 1271–1296. https://doi.org/10.3390/molecules16021271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Belikova, A.M., Zarytova, V.F., and Grineva, N.I., Tetrahedron Lett., 1967, vol. 37, pp. 3557–3562. https://doi.org/10.1016/s0040-4039(01)89794-x

    Article  CAS  PubMed  Google Scholar 

  33. Zamecnik, P. and Stephenson, M., Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 280–284. https://doi.org/10.1073/pnas.75.1.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bennett, C.F., Annu. Rev. Med., 2019, vol. 70, pp. 307–321. https://doi.org/10.1146/annurev-med-041217-010829

    Article  CAS  PubMed  Google Scholar 

  35. Shen, X. and Corey, D.R., Nucleic Acids Res., 2018, vol. 46, pp. 1584–1600. https://doi.org/10.1093/nar/gkx1239

    Article  CAS  PubMed  Google Scholar 

  36. Havens, M.A. and Hastings, M.L., Nucleic Acids Res., 2016, vol. 44, pp. 6549–6563. https://doi.org/10.1093/nar/gkw533

    Article  PubMed  PubMed Central  Google Scholar 

  37. Castanotto, D. and Stein, C.A., Curr. Opin. Oncol., 2014, vol. 26, pp. 584–589. https://doi.org/10.1097/CCO.0000000000000127

    Article  CAS  PubMed  Google Scholar 

  38. Hnik, P., Boyer, D.S., Grillone, L.R., Clement, J.G., Henry, S.P., and Green, E.A., J. Diabetes Sci. Technol., 2009, vol. 3, pp. 924–930. https://doi.org/10.1177/193229680900300440

    Article  PubMed  PubMed Central  Google Scholar 

  39. Amado, D.A. and Davidson, B.L., Mol. Ther., 2021, vol. 29, pp. 345–358. https://doi.org/10.1016/j.ymthe.2021.04.008

    Article  CAS  Google Scholar 

  40. Seguin, R.M. and Ferrary, N., Expert Opin. Investig. Drugs, 2009, vol. 18, pp. 1505–1517. https://doi.org/10.1517/13543780903179294

    Article  CAS  PubMed  Google Scholar 

  41. Roman-Blas, J.A. and Jimenez, S.A., Osteoarthritis Cartilage, 2006, vol. 14, pp. 839–848. https://doi.org/10.1016/j.joca.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  42. Matzen, K., Elzaouk, L., Matskevich, A.A., Nitzsche, A., Heinrich, J., and Moelling, K., Nat. Biotechnol., 2007, vol. 25, pp. 669–674. https://doi.org/10.1038/nbt1311

    Article  CAS  PubMed  Google Scholar 

  43. Janssen, H.L.A., Reesink, H.W., Lawitz, E.J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., van der Meer, A.J., Patick, A.K., Chen, A., Zhou, Y., Persson, R., King, B.D., Kauppinen, S., Levin, A.A., and Hodges, M.R., N. Engl. J. Med., 2013, vol. 368, pp. 1685–1694. https://doi.org/10.1056/NEJMoa1209026

    Article  CAS  PubMed  Google Scholar 

  44. Wong, J.P., Christopher, M.E., Salazar, A.M., Sun, L.Q., Viswanathan, S., Wang, M., Saravolac, E.G., and Cairns, M.J., Front. Biosci. Schol., 2010, vol. 2, pp. 791–800. https://doi.org/10.2741/s102

    Article  Google Scholar 

  45. Ge, Q., Pastey, M., Kobasa, D., Puthavathana, P., Lupfer, C., Bestwick, R.K., Iversen, P.L., Chen, J., and Stein, D.A., Antimicrob. Agents Chemother., 2006, vol. 50, pp. 3724–3733. https://doi.org/10.1128/AAC.00644-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, T., Wang, T., Zhao, P., Liang, M., Gao, Y., Yang, S., Qin, C., Wang, C., and Xia, X., Int. Immunopharmacol., 2011, vol. 11, pp. 2057–2061. https://doi.org/10.1016/j.intimp.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  47. Levina, A.S., Repkova, M.N., Ismagilov, Z.R., Shikina, N.V., Malygin, E.G., Mazurkova, N.A., Zinov’ev, V.V., Evdokimov, A.A., Baiborodin, S.I., and Zarytova, V.F., Sci. Rep., 2012, vol. 2, p. 256. https://doi.org/10.1038/srep00756

    Article  CAS  Google Scholar 

  48. Levina, A.S., Repkova, M.N., Bessudnova, E.V., Filippova, E.I., Mazurkova, N.A., and Zarytova, V.F., Beilstein J. Nanotechnol., 2016, vol. 7, pp. 1166–1173. https://doi.org/10.3762/bjnano.7.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perry, C.M. and Balfour, J.A., Drugs, 1999, vol. 57, pp. 375–380. https://doi.org/10.2165/00003495-199957030-00010

    Article  CAS  PubMed  Google Scholar 

  50. Yu, A.M. and Tu, M.J., Pharmacol. Ther., 2022, vol. 230, p. 107967. https://doi.org/10.1016/j.pharmthera.2021.107967

    Article  CAS  PubMed  Google Scholar 

  51. Cantin, E.M., Podsakoff, G., Willey, D.E., and Openshaw, H., Adv. Exp. Med. Biol., 1992, vol. 312, pp. 139–149. https://doi.org/10.1007/978-1-4615-3462-4

    Article  CAS  PubMed  Google Scholar 

  52. Aurelian, L. and Smith, C.C., Antisense Nucleic Acid Drug Dev., 2000, vol. 10, pp. 77–85. https://doi.org/10.1089/oli.1.2000.10.77

    Article  CAS  PubMed  Google Scholar 

  53. Kulka, M., Wachsman, M., Miura, S., Fishelevich, R., Miller, P.S., Ts’o, P.O., and Aurelian, L., Antiviral. Res., 1993, vol. 20, pp. 115–130. https://doi.org/10.1016/0166-3542(93)90002-z

    Article  CAS  PubMed  Google Scholar 

  54. Kulka, M., Smith, C.C., Levis, J., Fishelevich, R., Hunter, J.C., Cushman, C.D., Miller, P.S., and Ts’o, P.O., Antimicrob. Agents Chemother., 1994, vol. 38, pp. 675–680. https://doi.org/10.1128/AAC.38.4.675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blumenfeld, M., Meguenni, S., Poddevin, B., and Vasseur, M., WO1995004141A1, 09.02.1995.

  56. Peyman, A., Helsberg, M., Kretzschmar, G., Mag, M., Ryte, A., and Uhlmann, E., Antivir. Res., 1997, vol. 33, pp. 135–139. https://doi.org/10.1016/s0166-3542(96)01003-0

    Article  CAS  PubMed  Google Scholar 

  57. Birch-Hirschfeld, E., Knorre, C.M., Stelzner, A., and Schmidtke, M., Nucleos. Nucleot., 1997, vol. 16, pp. 623–628. https://doi.org/10.1080/07328319708002926

    Article  CAS  Google Scholar 

  58. Shoji, Y., Shimada, J., Mizushima, Y., Iwasawa, A., Nakamura, Y., Inouye, K., Azuma, T., Sakurai, M., and Nishimura, T., Antimicrob. Agents Chemother., 1996, vol. 40, pp. 1670–1675. https://doi.org/10.1128/AAC.40.7.1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shoji, Y., Norimatsu, M., Shimada, J., and Mizushima, Y., Antisense Nucleic Acid Drug Dev., 1998, vol. 8, pp. 255–263. https://doi.org/10.1089/oli.1.1998.8.255

    Article  CAS  PubMed  Google Scholar 

  60. Shoji, Y., Ishige, H., Tamura, N., Iwatani, W., Norimatsu, M., Shimada, J., and Mizushima, Y., J. Drug Target, 1998, vol. 5, pp. 261–273. https://doi.org/10.3109/10611869808995880

    Article  CAS  PubMed  Google Scholar 

  61. Vinogradov, S.V., Suzdaltseva, Y., Alakhov, V.Y., and Kabanov, A.V., Biochem. Biophys. Res. Commun., 1994, vol. 203, pp. 959–966. https://doi.org/10.1006/bbrc.1994.2275

    Article  CAS  PubMed  Google Scholar 

  62. Clusel, C., Meguenni, S., Elias, I., Vasseur, M., and Blumenfeld, M., Gene Expr., 1995, vol. 4, pp. 301–309.

    CAS  PubMed  Google Scholar 

  63. Jacob, A., Duval-Valentin, G., Ingrand, D., and Thuong, N.T., Eur. J. Biochem., 1993, vol. 216, pp. 19–24. https://doi.org/10.1111/j.1432-1033.1993.tb18111.x

    Article  CAS  PubMed  Google Scholar 

  64. Chiba, A., Ogasawara, M., Yoshida, I., Knox, Y.M., and Suzutani, T., Tohoku J. Exp. Med., 2000, vol. 192, pp. 141–149. https://doi.org/10.1620/tjem.192.141

    Article  CAS  PubMed  Google Scholar 

  65. Hoke, G.D., Draper, K., Freier, S.M., Gonzalez, C., Driver, V.B., Zounes, M.C., and Ecker, D.J., Nucleic Acids Res., 1991, vol. 19, pp. 5743–5748. https://doi.org/10.1093/nar/19.20.5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Draper, K.G., Ecker, D.J., Mirabelli, C.K., and Crooke, S.T., Patent US 6310044 B1, publ. 30.10.2001.

  67. Nelson, M.H., Stein, D.A., Kroeker, A.D., Hatlevig, S.A., Iversen, P.L., and Moulton, H.M., Bioconjug. Chem., 2005, vol. 16, pp. 959–966. https://doi.org/10.1021/bc0501045

    Article  CAS  PubMed  Google Scholar 

  68. Patel, D., Opriessnig, T., Stein, D.A., Halbur, P.G., Meng, X.J., Iversen, P.L., and Zhang, Y.J., Antiviral Res., 2008, vol. 77, pp. 95–107. https://doi.org/10.1016/j.antiviral.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  69. Ge, Q., McManus, M.T., Nguyen, T., Shen, C.H., Sharp, P.A., Eisen, H.N., and Chen, J., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 2718–2723. https://doi.org/10.1073/pnas.0437841100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moerdyk-Schauwecker, M., Stein, D.A., Eide, K., Blouch, R.E., Bildfell, R., and Iversen, P., Jin, L., Antiviral Res., 2009, vol. 84, pp. 131–141. https://doi.org/10.1016/j.antiviral.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  71. Smith, C.C., Kulka, M., and Aurelian, L., Int. J. Oncol., 2000, vol. 17, pp. 841–850. https://doi.org/10.3892/ijo.17.4.841

    Article  CAS  PubMed  Google Scholar 

  72. Eide, K., Moerdyk-Schauwecker, M., Stein, D.A., Bildfell, R., Koelle, D.M., and Jin, L., Antivir. Ther., 2010, vol. 15, pp. 1141–1149. https://doi.org/10.3851/IMP1694

    Article  CAS  PubMed  Google Scholar 

  73. Wheeler, L.A., Infect. Dis. Obstet. Gynecol., 2014, vol. 2014, Article ID: 125087. https://doi.org/10.1155/2014/125087

  74. Katakowski, J.A. and Palliser, D., Curr. Opin. Mol. Ther., 2010, vol. 12, pp. 192–202. https://pubmed.ncbi.nlm.nih.gov/20373263

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Manda, V., Josyula, V.R., and Hariharapura, R.C., Virusdisease, 2019, vol. 30, pp. 180–185. https://doi.org/10.1007/s13337-018-00508-z

    Article  PubMed  PubMed Central  Google Scholar 

  76. Baxi, K., Sawarkar, S., Momin, M., Patel, V., and Fernandes, T., Drug Del. Transl. Res., 2020, vol. 10, pp. 962–974. https://doi.org/10.1007/s13346-020-00741-4

    Article  CAS  Google Scholar 

  77. Mollaei, H., Monavari, S., Arabzadeh, S., Shahrabadi, M.S., and Fazlalipour, M., J. Antivir. Antiretrovir., 2014, vol. 6, pp. 114–119. https://doi.org/10.4172/JAA.10000106

    Article  CAS  Google Scholar 

  78. Jbara-Agbaria, D., Blondzik, S., Burger-Kentischer, A., Agbaria, M., Nordling-David, M.M., Giterman, A., Aizik, G., Rupp, S., and Golomb, G., Pharmaceutics, 2022, vol. 14, Article ID: 633. https://doi.org/10.3390/pharmaceutics14030633

  79. Song, B., Liu, X., Wang, Q., Zhang, R., Yang, T., Han, Z., and Xu, Y., J. Neurovirol., 2016, vol. 22, pp. 799–807. https://doi.org/10.1007/s13365-016-0453-4

    Article  CAS  PubMed  Google Scholar 

  80. Paavilainen, H., Lehtinen, J., Romanovskaya, A., Nygårdas, M., Bamford, D.H., Poranen, M.M., and Hukkanen, V., J. Med. Virol., 2016, vol. 88, pp. 2196–2205. https://doi.org/10.1002/jmv.24578

    Article  CAS  PubMed  Google Scholar 

  81. Paavilainen, H., Lehtinen, J., Romanovskaya, A., Nygårdas, M., Bamford, D.H., Poranen, M.M., and Hukkanen, V., Antivir. Ther., 2017, vol. 22, pp. 631–637. https://doi.org/10.3851/IMP3153

    Article  CAS  PubMed  Google Scholar 

  82. Kalke, K., Lehtinen, J., Gnjatovic, J., Lund, L.M., Nyman, M.C., Paavilainen, H., Orpana, J., Lasanen, T., Frejborg, F., Levanova, A.A., Vuorinen, T., Poranen, M.M., and Hukkanen, V., Viruses, 2020, vol. 12, Article ID: 1434. https://doi.org/10.3390/v12121434

  83. Kalke, K., Lund, L.M., Nyman, M.C., Levanova, A.A., Urtti, A., Poranen, M.M., Hukkanen, V., and Paavilainen, H., PLoS Pathog., 2022, vol. 18, Article ID: e1010688. https://doi.org/10.1371/journal.ppat.1010688

  84. Steinbach, J.M., Weller, C.E., Booth, C.J., and Saltzman, W.M., J. Control. Release, 2012, vol. 162, pp. 102–110. https://doi.org/10.1016/j.jconrel.2012.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, Y., Navarro, F., Lal, A., Basar, E., Pandey, R.K., Manoharan, M., Feng, Y., Lee, S.J., Lieberman, J., and Palliser, D., Cell Host Microbe, 2009, vol. 5, pp. 84–94. https://doi.org/10.1016/j.chom.2008.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Palliser, D., Chowdhury, D., Wang, Q.Y., Lee, S.J., Bronson, R.T., Knipe, D.M., and Lieberman, J., Nature, 2006, vol. 439, pp. 89–94. https://doi.org/10.1038/nature04263

    Article  CAS  PubMed  Google Scholar 

  87. Wolff, N., Kollenda, S., Klein, K., Loza, K., Heggen, M., Brochhagen, L., Witzke, O., Krawczyk, A., Hilger, I., and Epple, M., Nanoscale Adv., 2022, vol. 4, pp. 4502– 4516. https://doi.org/10.1039/d2na00250g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Currie, S., Kim, S., Gu, X., Ren, X., Lin, F., Liu, S., Yang, C., Kim, J., and Liu, S., Colloids Surf. B Biointerfaces, 2020, vol. 196, Article ID: 111287. https://doi.org/10.1016/j.colsurfb.2020.111287

  89. Grajewski, R.S., Li, J., Wasmuth, S., Hennig, M., Bauer, D., and Heiligenhaus, A., Graefes Arch. Clin. Exp. Ophthalmol., 2012, vol. 250, pp. 231–238. https://doi.org/10.1007/s00417-011-1840-4

    Article  CAS  PubMed  Google Scholar 

  90. Li, J., Wasmuth, S., Bauer, D., Baehler, H., Hennig, M., and Heiligenhaus, A., Graefes Arch. Clin. Exp. Ophthalmol., 2008, vol. 246, pp. 1265–1273. https://doi.org/10.1007/s00417-008-0839-y

    Article  CAS  PubMed  Google Scholar 

  91. Mei, H., Xing, Y., Yang, J., Wang, A., Xu, Y., and Heiligenhaus, A., Pathobiology, 2009, vol. 76, pp. 45–50. https://doi.org/10.1159/000178155

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 23-24-00184).

Author information

Authors and Affiliations

Authors

Contributions

Author ASL—analyzed literature data and wrote manuscript. Author MNR—contributed to manuscript preparation. Author VFZ—edited manuscript. All authors participated in the discussions.

Corresponding author

Correspondence to A. S. Levina.

Ethics declarations

This article does not contain the research carried out by any of the authors of this work with the participation of humans and animals as objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levina, A.S., Repkova, M.N. & Zarytova, V.F. Therapeutic Nucleic Acids Against Herpes Simplex Viruses (A Review). Russ J Bioorg Chem 49, 1243–1262 (2023). https://doi.org/10.1134/S1068162023060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023060067

Keywords:

Navigation