Skip to main content
Log in

Induction of Antioxidant Activity by Selenium Compounds in the Aspergillus niger Mycelium

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Investigation of the induction of antioxidant activity (AOA) by selenium compounds (Na2SeO3, diacetophenonyl selenide (DAPS-25), L-selenocystine) in various organisms is of interest as a way of protecting cell membranes from oxidative stress. A comparative analysis of the antioxidant activity of 23 amino acids was performed by coulometric titration with electrogenerated bromine and iodine. The activity decreases in the order: cystine > tryptophan > selenocystine > tyrosine > 3,3'-dimethyl-L-selenocystine > methionine. Only amino acids with sulfhydryl and selenol groups as more active reductants can interact with the electrogenerated iodine: cysteine > selenocysteine > threo-3-methyl-L-selenocysteine. Probably the correction of the antioxidant status at the amino acids level is based on the sulfhydryl and selenol groups in radicals. In case they are not enough, cystine, selenocystin, tryptophan, tyrosine, and methionine will act as scavenger-reductants. It was found that selenium compounds dose-dependently induce the total antioxidant activity of the Aspergillus niger mycelium and affect indicators of the antioxidant status (amino acid composition and catalase activity), which in turn stimulates the biomass accumulations. DAPS-25 and sodium selenite treatment at high doses (0.025 mg Se/L) caused the greatest effect on the total AOA induction (3.4–5.5 times). Lower concentrations (0.0025–0.00025 mg Se/L) had a lesser effect (25.8–41.7%). Activity in samples with L-selenocystin increased by 1.6–43.3%. It is noted that the iodine antioxidant activity in the mycelium was generally lower than the bromine one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Jitca, G., Osz, B.E., Tero-Vescan, A., Miklos, A.P., Rusz, C.M., Batrinu, M.G., and Vari, C.E., Antioxidants, 2022, vol. 11, pp. 1–30.

    Article  Google Scholar 

  2. Blinokhvatov, A.F., Denisova, G.V., and Il’in, D.Yu., Selen v biosfere (Selenium in Biosphere), Blinokhvatov, A.F., Ed., Penza: Penzensk. S.-kh. Akad., 2001.

  3. Santesmasses, D., Mariotti, M., and Gladyshev, V.N., Antioxid. Redox Signal., 2020, vol. 33, pp. 525–536. https://doi.org/10.1089/ars.2020.8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y., Roh, Y.J., Han, S.J., Park, I., Lee, H.M., Ok, Y.S., Lee, B.C., and Lee, S.R., Antioxidants (Basel), 2020, vol. 9, pp. 1–17. https://doi.org/10.3390/antiox9050383

    Article  CAS  Google Scholar 

  5. Sies, H., Free Radical Biol. Med., 1993, vol. 14, pp. 313–323. https://doi.org/10.1016/0891-5849(93)90028-s

    Article  CAS  Google Scholar 

  6. Blinokhvatov, A.F., 9-R-sim-nonahydro-10-oxa(chalcogene) anthracenes and salts of 9-R-sim-octahydro-10-oxonium (chalcogenonium) anthracene, Doctoral (Chem.) Dissertation, Saratov, 1993.

  7. Drevko, B.I., RF Patent no. 2051681 S1, 1996.

  8. Poluboyarinov, P.A. and Golubkina, N.A., Russ. J. Plant Physiol., 2015, vol. 62, pp. 367–374. https://doi.org/10.1134/S1021443715030164

    Article  CAS  Google Scholar 

  9. Castillo-Godina, R.G., Foroughbakhch-Pournavab, R., and Benavides-Mendoza, A., J. Agr. Sci. Technol., 2016, vol. 18, pp. 233–244.

    Google Scholar 

  10. Bebien, M., Lagniel, G., Garin, J., Touati, D., Vermeglio, A., and Labarre, J., J. Bacteriol., 2002, vol. 184, pp. 1556–1564. https://doi.org/10.1128/jb.184.6.1556-1564.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strogov, V.V. and Rodionova, T.N., Vestn. Vet., 2011, vol. 59, pp. 150–152.

    Google Scholar 

  12. Wang, H.W., Cai, D.B., Xiao, G.H., Zhao, C.L., Wang, Z.H., Xu, H.M., and Guan, Y.Q., Israeli J. Aquacult.-Bamidge, 2009, vol. 61, pp. 322–332.

    Google Scholar 

  13. Boryaev, G.I., Gavryushina, I.V., and Fedorov, Yu.N., S.-kh. Biol., 2010, vol. 45, pp. 65–70.

    Google Scholar 

  14. Dzobo, K. and Naik, Y.S., S. Afr. J. Sci., 2013, vol. 109, pp. 1–8. https://doi.org/10.1590/sajs.2013/965

    Article  CAS  Google Scholar 

  15. Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., Krivenkov, L., Pietrantonio, L., and Caruso, G., Plants (Basel), 2019, vol. 8, p. 102. https://doi.org/10.3390/plants8040102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Misra, S., Kwong, R.W.M., and Niyogi, S., J. Exp. Biol., 2012, vol. 215, pp. 1491–1501. https://doi.org/10.1242/jeb.062307

    Article  CAS  PubMed  Google Scholar 

  17. Poluboyarinov, P.A., Elistratov, D.G., and Shvets, V.I., Tonk. Khim. Tekhnol., 2019, vol. 14, pp. 5–24.

    CAS  Google Scholar 

  18. Casalbore, G., Mastragostino, M., and Valcher, S., J. Electroanal. Chem., 1978, vol. 87, pp. 411–418.

    Article  CAS  Google Scholar 

  19. Abullin, I.F. and Budnikov, G.K., Zavod. Lab., 1998, vol. 64, pp. 1–12.

    Google Scholar 

  20. Sorensen, A., Gotfredsen, H., and Pittelkow, M., Chem. Commun., 2014, vol. 50, pp. 3716–3718. https://doi.org/10.1039/C4CC00523F

    Article  Google Scholar 

  21. Sulfur in Organic and Inorganic Chemistry, Senning, A., Ed., New York: Marcel Dekker, 1972.

    Google Scholar 

  22. Pleasants, J.C., Guo, W., and Rabenstein, D.L., J. Am. Chem. Soc., 1989, vol. 111, pp. 6553–6558.

    Article  CAS  Google Scholar 

  23. Hondal, R.J., and Ruggles, E.L., Amino Acids, 2011, vol. 41, pp. 73–89. https://doi.org/10.1007/s00726-010-0494-6

    Article  CAS  PubMed  Google Scholar 

  24. Blinokhvatov, A.F., Denisova, G.V., Ivanov, A.I., and Il’in, D.Yu., Mikol. Fitopatol., 2000, vol. 34, pp. 42–45.

    CAS  Google Scholar 

  25. Knyazeva, O.E. and Poluboyarinov, P.A., in Sovremennye problemy teoreticheskoi i eksperimental’noi khimii. Mezhvuzovskii sbornik nauchnykh trudov XIV Vserossiiskoi konferentsii molodykh uchenykh s mezhdunarodnym uchastiem (Modern Problems of Theoretical and Experimental Chemistry: Interuniversity Collection of Scientific Papers of XIV All-Russia Conference of Young Scientists with International Participation), Saratov, 2020, pp. 64–67.

  26. Kieliszek, M., Blazejak, S., Bzducha-Wrobel, A., and Kot, A.M., Biol. Trace Elem. Res., 1989, vol. 187, pp. 316–327.

    Article  Google Scholar 

  27. Szabados, L. and Savoure, A., Trends Plant Sci., 2010, vol. 15, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan, L., Zhang, R., Ma, X., Yang, L., Zheng, Q., Chen, D., Li, M., Fan, T., Liu, Y., Pan, L., and Yin, X., Nutrients, 2018, vol. 10, p. 318. https://doi.org/10.3390/nu10030318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chikin Yu.A., Likhachev A.N., Mikol. Fitopatol., 1997, vol. 31, no. 4, pp. 54-61.

    Google Scholar 

  30. Poluboyarinov, P.A., Moiseeva, I.Ya., Mikulyak, N.I., Golubkina, N.A., and Kaplun, A.P., Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol., 2022, vol. 65, pp. 19–29. https://doi.org/10.6060/ivkkt.20226502.6466

    Article  CAS  Google Scholar 

  31. Poluboyarinov, P.A., Golubkina, N.A., Aniskov, A.A., Moiseeva, I.J., Glebova, N.N., and Shvets, V.I., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 241–247.

    Article  CAS  Google Scholar 

  32. Lapin A.A., MVI-001-44538054-07. Summarnaya antioksidantnaya aktivnost’. Metodika vypolneniya izmerenii na kulonometricheskom analizatore (MVI-001-44538054-07. Total Antioxidant Activity. Methods of Measurement on a Coulometric Analyzer). Zherdevka: OOO Kontsern Otechestvennye innovatsionnye tekhnologii, 2011.

  33. Mineev, V.G., Sychev, V.G., Amel’yanchik, O.A., Bolysheva, T.N., Gomonova, N.F., Durynina, E.P., Egorov, B.C., Egorova, E.V., Edemskaya, N.L., Karpova, E.A., and Prizhukova, V.G., Praktikum po agrokhimii (A Practical Course in Agrochemistry), Moscow: Mosk. Gos. Univ., 2001.

  34. M-04-38-2009. Metodika opredeleniya proteinogennykh aminokislot v kormakh i syr’e (M-04-38-2009. Methodology for Determination of Proteinogenic Amino Acids in Feeds and Raw Materials), St. Petersburg: OOO Lyumeks-marketing, 2014.

  35. Pankratov, A.N., Tsivileva, O.M., Beloborodaya, A.S., Tsymbal, O.A., and Drevko, Ya.B., Izv. Sarat. Univ. Nov. Ser., Ser.: Khim. Biol. Ekol., 2017, vol. 17, no. 3, pp. 286–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Poluboyarinov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Abbreviations: GPX, glutathione peroxidase, DAPS-25, diacetophenonylselenide.

Corresponding author: phone: +7 (950) 230-48-76

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluboyarinov, P.A., Kuznetsova, A.V., Moiseeva, I.Y. et al. Induction of Antioxidant Activity by Selenium Compounds in the Aspergillus niger Mycelium. Russ J Bioorg Chem 49, 823–835 (2023). https://doi.org/10.1134/S1068162023040155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023040155

Keywords:

Navigation