Skip to main content
Log in

Investigation of the Antioxidant Role of Acidic and Alkaline Hydrolysates of Pectin Isolated from Quince (Cydonia oblonga)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this research, the antioxidant activity of acidic and alkaline hydrolyzates of pectin isolated from quince (Cydonia oblonga) was investigated. The antioxidant role of quince has been known since before, but so far few papers have been published dealing with the antioxidant role of pectin hydrolyzate. In this study, quince pectin was isolated and hydrolyzed by acid and alkaline hydrolysis. Antioxidant activity was examined using a number of different methods, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, Cupric Ion Reducing Antioxidant Capacity (CUPRAC) assay, iron chelators, and oxygen radical absorption capacity (ORAC). Our results, especially the ORAC test, show that depolymerization produces the most substances with antioxidant release properties in the alkaline hydrolysis of quince pectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Raju, N., Gulzar, S., and Benjakul, S., Int. J. Food Sci. Technol., 2022, vol. 57, pp. 1563–1572. https://doi.org/10.1111/ijfs.15517

    Article  CAS  Google Scholar 

  2. Fernandez, M.L., Sun, D.M., Tosca, M.A., and McNamara, D.J., Am. J. Clin. Nutr., 1994, vol. 59, pp. 869–878. https://doi.org/10.1093/ajcn/59.4.869

    Article  CAS  PubMed  Google Scholar 

  3. Campiglio, C.E., Carcano, A., and Draghi, L., J. Biomed. Mater. Res., Part A, 2022, vol. 110, pp. 515–524. https://doi.org/10.1002/jbm.a.37301

    Article  CAS  Google Scholar 

  4. Jenkins, D.J.A., Gassull, M.A., Leeds, A.R., Metz, G., Dilawari, J.B., Slavin, B., and Blendis, L.M., Gastroenterology, 1977, vol. 73, pp. 215–217. https://doi.org/10.1016/S0016-5085(19)32189-4

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz, S.E., Levine, R.A., Singh, A., Scheidecker, J.R., and Track, N.S., Gastroenterology, 1982, vol. 83, pp. 812–817. https://doi.org/10.1016/S0016-5085(82)80010-3

    Article  CAS  PubMed  Google Scholar 

  6. Song, C., Huang, F., Liu, L., Zhou, Q., Zhang, D., Fang, Q., Lei, H., and Niu, H., Int. J. Biol. Macromol., 2022, vol. 194, pp. 412–421. https://doi.org/10.1016/j.ijbiomac.2021.11.083

    Article  CAS  PubMed  Google Scholar 

  7. Lysko, S.B., Baturina, O.A., Naumova, N.B., Lescheva, N.A., Pleshakova, V.I., and Kabilov, M.R., Agriculture, 2021, vol. 12, p. 24. https://doi.org/10.3390/agriculture12010024

    Article  CAS  Google Scholar 

  8. Wikiera, A., Kozioł, A., Mika, M., and Stodolak B., Food Chem., 2022, vol. 388, p. 133020. https://doi.org/10.1016/j.foodchem.2022.133020

    Article  CAS  PubMed  Google Scholar 

  9. Nancy Picot-Allain, M.C., Amiri-Rigi, A., Abdoun-Ouallouche, K., Aberkane, L., Djefal-Kerrar, A., Mahomoodally, M.F., and Emmambux, M.N., Food Biosci., 2022, vol. 46, p. 101550. https://doi.org/10.1016/j.fbio.2022.101550

    Article  CAS  Google Scholar 

  10. Guo, Q., Bayram, I., Shu, X., Su, J., Liao, W., Wang, Y., and Gao, Y., Food Chem., 2022, vol. 367, p. 130726. https://doi.org/10.1016/j.foodchem.2021.130726

    Article  CAS  PubMed  Google Scholar 

  11. Neckebroeck, B., Verkempinck, S.H.E., Van Audenhove, J., Bernaerts, T., de Wilde d’Estmael, H., Hendrickx, M.E., and Van Loey, A.M., Food Res. Int., 2021, vol. 141, p. 110087. https://doi.org/10.1016/j.foodres.2020.110087

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J., Cheng, H., Zhi, Z., Zhang, H., Linhardt, R.J., Zhang, F., Chen, S., and Ye, X., Food Hydrocoll., 2021, vol. 112, p. 106160. https://doi.org/10.1016/j.foodhyd.2020.106160

    Article  CAS  Google Scholar 

  13. Torres-Sciancalepore, R., Fernandez, A., Asensio, D., Riveros, M., Fabani, M.P., Fouga, G., Rodriguez, R., and Mazza, G., Energy Convers. Manage., 2022, vol. 252, p. 115076. https://doi.org/10.1016/j.enconman.2021.115076

    Article  CAS  Google Scholar 

  14. Sut, S., Dall’Acqua, S., Poloniato, G., Maggi, F., and Malagoli, M., J. Sci. Food Agric., 2019, vol. 99, pp. 1046–1054. https://doi.org/10.1002/jsfa.9271

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, L., Rocchetti, G., Zengin, G., Ak, G., Saber, F.R., Montesano, D., and Lucini, L., Foods, 2021, vol. 10, p. 1230. https://doi.org/10.3390/foods10061230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mustafa, B., Hajdari, A., Pulaj, B., Quave, C.L., and Pieroni, A., J. Herb. Med., 2020, vol. 22, p. 100344. https://doi.org/10.1016/j.hermed.2020.100344

    Article  Google Scholar 

  17. Sabir, S., Qureshi, R., Arshad, M., Amjad, M.S., Fatima, S., Masood, M., Saboon, and Chaudhari, S.K., Asian Pac. J. Trop. Dis., 2015, vol. 5, pp. 850–855. https://doi.org/10.1016/S2222-1808(15)60934-3

    Article  Google Scholar 

  18. Romulo, A., IOP Conf. Ser. Earth Environ. Sci., 2020, vol. 426, p. 012177. https://doi.org/10.1088/1755-1315/426/1/012177

  19. Nicklisch, S.C.T. and Waite, J.H., MethodsX, 2014, vol. 1, pp. 233–238. https://doi.org/10.1016/j.mex.2014.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adjimani, J.P. and Asare, P., Toxicol. Rep., 2015, vol. 2, pp. 721–728. https://doi.org/10.1016/j.toxrep.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freitas, C.M.P., Sousa, R.C.S., Dias, M.M.S., and Coimbra, J.S.R., Food Eng. Rev., 2020, vol. 12, pp. 460–472. https://doi.org/10.1007/s12393-020-09254-9

    Article  CAS  Google Scholar 

  22. Belkheiri, A., Forouhar, A., Ursu, A.V., Dubessay, P., Pierre, G., Delattre, C., Djelveh, G., Abdelkafi, S., Hamdami, N., and Michaud, P., Appl. Sci., 2021, vol. 11, p. 6596. https://doi.org/10.3390/app11146596

    Article  CAS  Google Scholar 

  23. Norman, A.G. and Martin, J.T., Biochem. J., 1930, vol. 24, pp. 649–660. https://doi.org/10.1042/bj0240649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konno, H., Yamasaki, Y., and Ozawa, J., Agric. Biol. Chem., 1980, vol. 44, pp. 2195–2197. https://doi.org/10.1080/00021369.1980.10864293

    Article  CAS  Google Scholar 

  25. Dalonso, N. and Petkowicz, C.L. de O., Food Chem., 2012, vol. 134, pp. 1804–1812. https://doi.org/10.1016/j.foodchem.2012.03.088

    Article  CAS  PubMed  Google Scholar 

  26. Qin, Z., Liu, H.-M., Lv, T.-T., and Wang, X.-D., Int. J. Biol. Macromol., 2020, vol. 147, pp. 1146–1155. https://doi.org/10.1016/j.ijbiomac.2019.10.083

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, M., Potkule, J., Tomar, M., Punia, S., Singh, S., Patil, S., Singh, S., Ilakiya, T., Kaur, C., and Kennedy, J.F., Carbohydr. Polym. Technol. Appl., 2021, vol. 2, p. 100054. https://doi.org/10.1016/j.carpta.2021.100054

    Article  CAS  Google Scholar 

  28. Apak, R., Güçlü, K., Özyürek, M., and Karademir, S.E., J. Agric. Food Chem., 2004, pp. 7970–7981. https://doi.org/10.1021/jf048741x

  29. Herrera-Rocha, K.M., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., González-Laredo, R.F., Larrosa-Pérez, M., and Moreno-Jiménez, M.R., Molecules, 2022, vol. 27, p. 2462. https://doi.org/10.3390/molecules27082462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minić, S., Ješić, M., Đurović, D., Miletić, S., Lugonja, N., Marinković, V., Nikolić-Kokić, A., Spasić, S., and Vrvić, M.M., J. Paediatr. Child Health, 2018, vol. 54, pp. 160–164. https://doi.org/10.3390/molecules27082462

    Article  CAS  PubMed  Google Scholar 

  31. Ou, B., Hampsch-Woodill, M., and Prior, R.L., J. Agric. Food Chem., 2001, vol. 49, pp. 4619–426. https://doi.org/10.1021/jf010586o

    Article  CAS  PubMed  Google Scholar 

  32. Muñoz-Almagro, N., Montilla, A., Moreno, F.J., and Villamiel, M., Ultrason. Sonochem., 2017, vol. 38, pp. 807–819. https://doi.org/10.1016/j.ultsonch.2016.11.039

    Article  CAS  PubMed  Google Scholar 

  33. Olano-Martin, E., Gibson, G.R., and Rastall, R.A., J. Appl. Microbiol., 2002, vol. 93, pp. 505–511. https://doi.org/10.1046/j.1365-2672.2002.01719.x

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, Y., He, Z., Bao, X., Wang, M., Yin, S., Song, L., Peng, Q., J. Funct. Foods, 2021, vol. 80, p. 104439. https://doi.org/10.1016/j.jff.2021.104439

    Article  CAS  Google Scholar 

  35. Stojanović, B.T., Mitić, S.S., Stojanović, G.S., Mitić, M.N., Kostić, D.A., Paunović, D.Ɖ., Arsić, B.B., and Pavlović, A.N., Food Chem., 2017, vol. 232, pp. 466–475. https://doi.org/10.1016/j.foodchem.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  36. Ho, Y.-Y., Lin, C.-M., and Wu, M.-C., J. Food Drug Anal., 2017, vol. 25, pp. 550–558. https://doi.org/10.1016/j.jfda.2016.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the Ministry of Education, Science and Technological Development of Republic of Serbia (Contract no. 451-03-68/2022-14/200026) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Spasić.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletić, S., Nikolić-Kokić, A., Jovanović, D. et al. Investigation of the Antioxidant Role of Acidic and Alkaline Hydrolysates of Pectin Isolated from Quince (Cydonia oblonga). Russ J Bioorg Chem 49, 147–155 (2023). https://doi.org/10.1134/S1068162023010193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023010193

Keywords:

Navigation