Skip to main content

Advertisement

Log in

Pyrazinamide Analogs Designed for Rational Drug Designing Strategies against Resistant Tuberculosis

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is a granulomatous infection that is still the biggest cause of death across the world. TB is a leading cause of death among those living with the Human Immunodeficiency Virus (HIV) and those who have acquired immune deficiency syndrome (HIV/AIDS), accounting for one out of every three HIV deaths. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB are also on the rise, posing a major threat to global TB control efforts. And they’ve contributed to the situation’s complexity. The emergence of MDR-TB strains demands the development of new molecular scaffolds. One possible method to combat drug resistance is to modify and reposition current anti-TB or old medications to produce derivatives that can work on resistant Mycobacterium bacilli. When compared to innovative medicines found by standard drug design and development methods, these might have a longer half-life, higher bioavailability, be more effective, and be more cost-effective. Although much research has been done on the effects of first-line drugs such as isoniazid, pyrazinamide, and rifampicin on drug-susceptible Mycobacterium tuberculosis (Mtb), little has been done on the effects of derivatives on resistant Mtb. As a result, the purpose of this research is to provide a brief overview of pyrazinamide derivatives, which have the potential to overcome resistance to the parent drug and serve as viable alternatives. Pyrazinamide derivatives' potential for developing new chemical entities (NCEs) to treat mycobacterial infections is yet unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Dye, C. and Williams, B.G., Science, 2010, vol. 328, pp. 856–861. https://doi.org/10.1126/science.1185449

    Article  CAS  PubMed  Google Scholar 

  2. Gangjee, A., Zaware, N., and Raghavan, S., Bioorg. Med. Chem., 2013, vol. 21, pp. 1857–1864. https://doi.org/10.1016/j.bmc.2013.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Q., Sabnis, Y., and Zhao, Z., Chem. Biol., 2013, vol. 20, pp. 146–159. https://doi.org/10.1016/j.chembiol.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wissner, A., Fraser, H.L., and Ingalls, C.L., Bioorg. Med. Chem., 2007, vol. 15, pp. 3635–3648. https://doi.org/10.1016/j.bmc.2007.03.055

    Article  CAS  PubMed  Google Scholar 

  5. Zumla, A., Raviglione, M., Hafner, R., and von Reyn, C.F., New Engl. J. Med., 2013, vol. 368, pp. 745–755. https://doi.org/10.1056/NEJMra1200894

    Article  CAS  PubMed  Google Scholar 

  6. Grange, J.M., Tuberculosis. A Comprehensive Clinical Reference, Saunders, 2009, 1st ed., pp. 44–59.

    Google Scholar 

  7. Krátký, M., Vinšová, J., Novotná, E., and Stolaríková, J., Eur. J. Pharm. Sci., 2014, vol. 53, pp. 1–9. https://doi.org/10.1016/j.ejps.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization, Global Tuberculosis Report, World Health Organization, 2019. https//apps.who.int/iris/bitstream/handle/10665/329368/ 9789241565714-eng.pdf. Accessed June 14, 2020.

  9. Evangelopoulos, D., da Fonseca, J.D., and Waddell, S.J., Int. J. Infect. Dis., 2014, vol. 32, pp. 76–80. https://doi.org/10.1016/j.ijid.2014.11.028

    Article  Google Scholar 

  10. Adam, M.A.M., Alib, H.M.H., and Khalil, E.A.G., J. Clin. Tuberc. Other Mycobact. Dis., 2017, vol. 9, pp. 21–23. https://doi.org/10.1016/j.jctube.2017.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murray, C.J.L., Styblo, K., and Rouillon, A., Bull. Int. Union Tuberc. Lung Dis., 1990, vol. 65, pp. 6–24. PMID: 2190653

    CAS  PubMed  Google Scholar 

  12. Barnes, P., Bloch, A.B., Davidson, P.T., and Sinder, D.E., N. Engl. J. Med., 1991, vol. 324, pp. 1664–1650. https://doi.org/10.1056/NEJM199106063242307

    Article  Google Scholar 

  13. Bloom, B.R. and Murray, C.J.L., Science, 1992, vol. 257, pp. 1055–1064. https://doi.org/10.1126/science.257.5073.1055

    Article  CAS  PubMed  Google Scholar 

  14. Dooley, S.W., Jarvis, W.R., Martone, W.J., and Snider, D.E., Ann. Intern. Med., 1992, vol. 117, pp. 257–259. https://doi.org/10.7326/0003-4819-117-3-257

    Article  CAS  PubMed  Google Scholar 

  15. Snider, D.E. and Roper, W.L., New Engl. J. Med., 1992, vol. 326, pp. 703–705. https://doi.org/10.1056/NEJM199203053261011

    Article  PubMed  Google Scholar 

  16. Judge, V., Narasimhan, B., and Ahuja, M., Hygeia J. D. Med., 2012, vol. 4, no. 1, pp. 1–6. http://www.researcherid.com/rid/C-3328-2012.

  17. World Health Organization. Tuberculosis, Extensively Drug-Resistant Tuberculosis, 2015. http://www.who.int/tb/challenges/mdr/xdr/en/. Accessed June 30, 2015.

  18. World Health Organization. Global Tuberculosis Report 2016, Geneva, Switzerland: WHO Press, 2016. WHO/HTM/TB/2016.13. ISBN 978 92 4 156539 4.

  19. Gandhi, N.R., Nunn, P., Dheda, K., Schaaf, H.S., Zignol, M., van Soolingen, D., Jensen, P., and Bayona, J., Lancet, 2010, vol. 375, pp. 1830–1843. https://doi.org/10.1016/S0140-6736(10)60410-2

    Article  PubMed  Google Scholar 

  20. Espinal, M.A., Tuberculosis, 2003, vol. 83, pp. 44–51. https://doi.org/10.1016/s1472-9792(02)00058-6

    Article  PubMed  Google Scholar 

  21. Ruiz, P., Rodríguez-Cano, F., Zerolo, F.J., and Casal, M., Microb. Drug Resist., 2002, vol. 8, no. 2, pp. 147–149. https://doi.org/10.1089/107662902760190707

    Article  CAS  PubMed  Google Scholar 

  22. Ashforth, E.J., Fu, C., Liu, X., Dai, H., Song, F., Guoac, H., and Zhang. L., Nat. Prod. Rep., 2010, vol. 27, pp. 1709–1719. https://doi.org/10.1039/c0np00008f

    Article  CAS  PubMed  Google Scholar 

  23. Blumberg, H.M., Burman, W.J., Chaisson, R.E., Daley, C.L., Etkind, S.C., Friedman, L.N., Fujiwara, P., Grzemska, M., Hopewell, P.C., Iseman, M.D., Jasmer, R.M., Koppaka, V., Menzies, R.I., O’Brien, R.J., Reves, R.R., Reichman. L.B., Simone, P.M., Starke, J.R., and Vernon, A.A., Am. J. Resp. Crit. Care Med., 2003, vol. 167, pp. 603–662. https://doi.org/10.1164/rccm.167.4.603

    Article  PubMed  Google Scholar 

  24. Chachignon, H., Scalacci, N., and Petricci, E., Org. Chem., 2015, vol. 80, pp. 5287–5295. https://doi.org/10.1021/acs.joc.5b00222

    Article  CAS  Google Scholar 

  25. Kumar, S. and Tiwari, M., Med. Chem. Res., 2015, vol. 24, pp. 245–257. https://doi.org/10.1007/s00044-014-1105-y

    Article  CAS  Google Scholar 

  26. Prasad, R., Indian J. Tuberc., 2005, vol. 52, pp. 121–131.

    Google Scholar 

  27. Paramasivan, C.N., Indian J. Tuberc., 1998, vol. 45, pp. 73–81. http://lrsitbrd.nic.in/indian_journal_of_tuberculosis.

    Google Scholar 

  28. Asif, M., Mini Rev. Med. Chem., 2012, vol. 12, pp. 1404–1418. https://doi.org/10.2174/13895575112091404

    Article  CAS  PubMed  Google Scholar 

  29. Asif, M., Orient. Pharm. Exp. Med., 2012, vol. 12, pp. 15–34. https://doi.org/10.1007/s13596-011-0020-8

    Article  Google Scholar 

  30. Hearn, M.J. and Cynamon, M.H., Drug Design Discov., 2003, vol.18, pp. 103–108. PMID: 15553921

    Article  CAS  Google Scholar 

  31. Chao, M.C. and Rubin, E.J., Ann. Rev. Microbiol., 2010, vol. 64, pp. 293–311. https://doi.org/10.1146/annurev.micro.112408.134043

    Article  CAS  Google Scholar 

  32. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., and Barrell, B.G., Nature, 1998, vol. 393, no. 6685, pp. 537–544. https://doi.org/10.1146/annurev.micro.112408.134043

    Article  CAS  PubMed  Google Scholar 

  33. Kaneko, T., Cooper, C., and Mdluli, K., Fut. Med. Chem., 2011, vol. 3, no. 11, pp. 1373–1400. https://doi.org/10.4155/fmc.11.115

    Article  CAS  Google Scholar 

  34. Shi, W., Zhang, X., Jiang, X., Yuan, H., Lee, J.S., Barry, C.E., Wang, H., Zhang, W., and Zhang, Y., Science, 2011, vol. 333, pp. 1630–1632. https://doi.org/10.1126/science.1208813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zumla, A., Hafner, R., Lienhardt, C., Hoelscher, M., and Nunn, A., Nat. Rev., 2012, vol. 11, pp. 171–172. https://doi.org/10.1038/nrd3694

    Article  CAS  Google Scholar 

  36. Sriram, D., Yogeeswari, P., and Reddy, S.P., Bioorg. Med. Chem. Lett., 2006, vol. 16, no. 8, pp. 2113–2116. https://doi.org/10.1016/j.bmcl.2006.01.064

    Article  CAS  PubMed  Google Scholar 

  37. Unissa, N.A., Hanna, L.E., and Swaminathan, S., Chem. Biol. Drug Des., 2016, vol. 87, no. 4, pp. 537–550. https://doi.org/10.1111/cbdd.12684

    Article  CAS  Google Scholar 

  38. Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R.S., Kishore, N., Jana, G.H., and Arora, S.K., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 6, pp. 1573–1576. https://doi.org/10.1016/j.bmcl.2005.01.073

    Article  CAS  PubMed  Google Scholar 

  39. Glushkov, R.G., Modnikova, G.A., Lvov, A.I., Krylova, L.Y.U., Pushkina, T.V., Guskova, T.A., and Soloveva, N.P., Khim.-Farm. Zh., 2004, vol. 38, pp. 420–424.

    CAS  Google Scholar 

  40. Heifets, L.B., Semin. Respir. Infect., 1994, vol. 9, pp. 84–103. PMID: 7973175.

    CAS  PubMed  Google Scholar 

  41. Doležal, M., Tůmová, L., Kešetovičová, D., Tůma, J., and Kráľová, K., Molecules, 2007, vol. 12, no. 12, pp. 2589–2598. https://doi.org/10.3390/12122589

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Souza, M.V.N., Curr. Opin. Pulm. Med., 2006, vol. 12, pp. 167–171. https://doi.org/10.1097/01.mcp.0000219264.42686.c9

    Article  PubMed  Google Scholar 

  43. De Souza, M.V.N., Rec. Pat. Anti-Infect. Drug Discov., 2006, vol. 1, pp. 33–44. https://doi.org/10.2174/157489106775244163

    Article  Google Scholar 

  44. Heifets, L. and Lindholm-Levy, P., Am. Rev. Resp. Dis., 1992, vol. 145, pp. 1223–1225. https://doi.org/10.1164/ajrccm/145.5.1223

    Article  CAS  PubMed  Google Scholar 

  45. Cynamon, M.H., Klemens, S.P., Chou, T.S., Gimi, R.H., and Welch, J.T., J. Med. Chem., 1992, vol. 35, pp. 1212–1215. https://doi.org/10.1021/jm00085a007

    Article  CAS  PubMed  Google Scholar 

  46. Somoskovi, A., Parsons, L., and Salfinger, M., Respir. Res., 2001, vol. 2, pp. 164–168. https://doi.org/10.1186/rr54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y., Scorpio, A., Nikaido, H., and Sun, Z., J. Bacteriol., 1999, vol. 181, pp. 2044–2049. https://doi.org/10.1128/JB.181.7.2044 2049.1999

    Article  CAS  Google Scholar 

  48. Zimhony, O., Cox, J.S., Welch, J.T., Vilcheze, C., and Jacobs, W.R., Nat. Med., 2000, vol. 6, pp. 1043–1047. https://doi.org/10.1038/79558

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Y., and Telenti, A., Genetics of drug resistance in Mycobacterium tuberculosis, in Molecular Genetics of Mycobacteria, Jacobs, W.R. and Hatfull, G.F., Eds., Washington DC: ASM Press, 2000, pp. 235–254.

    Google Scholar 

  50. Scorpio, A., Lindholm-Levy, P., and Heifets, L., Antimicrob. Agents Chemother., 1997, vol. 41, pp. 540–543. https://doi.org/10.1128/AAC.41.3.540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sreevatsan, S., Pan, X., Zhang, Y., Kreiswirth, B.N., and Musser, J.M., Antimicrob. Agents Chemother., 1997, vol. 41, pp. 636–640. https://doi.org/10.1128/AAC.41.3.636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirano, K., Takahashi, M., Kazumi, Y., Fukasawa, Y., and Abe, C., Int. J. Tuberc. Lung Dis., 1997, vol. 78, pp. 117–122. https://doi.org/10.1016/s0962-8479(98)80004-x

    Article  CAS  Google Scholar 

  53. Lemaitre, N., Sougakoff, W., Truffot-Pernot, C., and Jarlier, V., Agents Chemother., 1999, vol. 43, pp. 1761–1763. https://doi.org/10.1128/AAC.43.7.1761

    Article  CAS  Google Scholar 

  54. Marttila, H.J., Marjamaki, M., Vyshnevskaya, E., Vyshnevskiy, B.I., Otten, T.F., Vasilyef, A.V., and Viljanen, M.K., Antimicrob. Agents Chemother., 1999, vol. 43, pp. 1764–1766. https://doi.org/10.1128/AAC.43.7.1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mestdagh, M., Fonteyne, P.A., Realini, L., Rossau, R., Jannes, G., Mijs, W., De Smet, K.A.L., Portaels, F., and den Eeckhout, E.V., Antimicrob. Agents Chemother., 1999, vol. 43, pp. 2317–2319. https://doi.org/10.1128/AAC.43.9.2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng, S.J., Thebert, L., Sanchez, T., Heifets, L., and Zhang, Y., Antimicrob. Agents Chemother. 2000, vol. 44, pp. 528–532. https://doi.org/10.1128/AAC.44.3.528-532.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stoffels, K., Mathys, V., Fauville-Dufaux, M., Wintjens, R., and Bifani, P., Antimicrob. Agents Chemother., 2012, vol. 56, no. 10, pp. 5186–5193. https://doi.org/10.1128/AAC.05385-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dickinson, J.M., Aber, V.R., and Mitchison, D.A., Am. Rev. Respir. Dis., 1977, vol. 116, pp. 627–635. https://doi.org/10.1164/arrd.1977.116.4.627

    Article  CAS  PubMed  Google Scholar 

  59. Maria, J., Avelino, C., Sara, I., Mifsud, M., J. Catal., 2007, vol. 247, pp. 223–230. https://doi.org/10.1016/j.jcat.2007.02.003

    Article  CAS  Google Scholar 

  60. Doležal, M., Kesetovic, D., and Zítko, J., Curr. Pharm. Des., 2011, vol. 17, pp. 3506–3514. https://doi.org/10.2174/138161211798194477

    Article  PubMed  Google Scholar 

  61. Servusova, B., Vobickova, J., Paterova, P., Kubicek, V., Kunes, J., Dolezal, M., and Zitko, J., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 3589–3591. https://doi.org/10.1016/j.bmcl.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., Wade, M.M., Scorpio, A., Zhang, H., and Sun, Z., J. Antimicrob. Chemother., 2003, vol. 52, pp. 790–795. https://doi.org/10.1093/jac/dkg446

    Article  CAS  PubMed  Google Scholar 

  63. Peterson, N.D., Rosen, B.C., Dillon, N.A., and Baughn, A.D., Antimicrob. Agents Chemother. 2015, vol. 59, pp. 7320–7326. https://doi.org/10.1128/AAC.00967-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sayahi, H., Zimhony, O., Jacobs, W.R., Shekthman, A., and Welch, J.T., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 4804–4807. https://doi.org/10.1016/j.bmcl.2011.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi, W., Chen, J., Feng, J., Cui, P., Zhang, S., Weng, X., Zhang, W., and Zhang, Y., Emerg. Microbes Infect., 2014, vol. 3, art. ID e58. https://doi.org/10.1038/emi.2014.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zitko, J., Dolezal, M., Svobodova, M., Vejsova, M., Kunes, J., Kucera, R., and Jilek, P., Bioorg. Med. Chem., 2011, vol. 19, pp.1471–1476. https://doi.org/10.1016/j.bmc.2010.12.054

    Article  CAS  PubMed  Google Scholar 

  67. Zitko, J., Jampilek, J., Dobrovolny, L., Svobodova, M., Kunes, J., and Dolezal, M., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 1598–1601. https://doi.org/10.1016/j.bmcl.2011.12.129

    Article  CAS  PubMed  Google Scholar 

  68. Zitko, J., Servusova, B., Janoutova, A., Paterova, P., Mandikova, J., Garaj, V., Vejsova, M., Marek, J., and Dolezal, M., Bioorg. Med. Chem., 2015, vol. 23, pp. 174–183. https://doi.org/10.1016/j.bmc.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  69. Servusova, B., Paterova, P., Mandikova, J., Kubicek, V., Kucera, R., Kunes, J., Dolezal, M., and Zitko, J., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 450–453. https://doi.org/10.1016/j.bmcl.2013.12.054

    Article  CAS  PubMed  Google Scholar 

  70. Servusova-Vanaskova, B., Jandourek, O., Paterova, P., Kordulakova, J., Plevakova, M., Kubicek, V., Kucera, R., Garaj, V., Naesens, L., Kunes, J., Doležal, M., and Zitko, J., Med. Chem. Comm., 2015, vol. 6, pp. 1311–1317. https://doi.org/10.1039/c5md00178a

    Article  CAS  Google Scholar 

  71. Servusova, B., Eibinova, D., Dolezal, M., Kubicek, V., Paterova, P., Pesko, M., and Kralova, K., Molecules, 2012, vol. 17, pp. 13183–13198. https://doi.org/10.3390/molecules171113183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zitko, J., Servusova, B., Paterova, P., Mandikova, J., Kubicek, V., Kucera, R., Hrabcova, V., Kunes, J., Soukup, O., and Dolezal, M., Molecules, 2013, vol. 18, pp. 14807–14825. https://doi.org/10.3390/molecules181214807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jandourek, O., Dolezal, M., Paterova, P., Kubicek, V., Pesko, M., Kunes, J., Coffey, A., Guo, J., and Kralova, K., Molecules 2014, vol. 19, pp. 651–671. https://doi.org/10.3390/molecules19010651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jandourek, O., Dolezal, M., Klementova, M., Kralova, K., and Pesko, M., Microwave assisted synthesis of new pyrazinamide analogues and their biological evaluation, in Proc. 16th Int. Electron. Conf. on Synthetic Organic Chemistry, November 29, 2012, Sciforum Electron. Conf. Ser., MDPI, Basel, Switzerland, 2012, vol. 16, p. 12.

  75. Kralova, K., Pesko, M., Paterova, P., Kunes, J., Tauchman, M., Eibinova, D., Carillo, C., Zitko, J., and Dolezal, M., Substituted N-benzylpyrazine-2-carboxamides, their synthesis, hydro-lipophilic properties and evaluation of their antimycobacterial and photosynthesis-inhibiting activities, in Proc. 15th Int. Electr. Conf. on Synthetic Organic Chemistry, November 1–30, 2011, Sciforum Electron. Conf. Ser., MDPI, Basel, Switzerland, 2011, vol. 15, p. 6.

  76. Kuo, M.R., Morbidoni, M.R., Alland, D., Sneddon, S.F., Gourlie, B.B., Staveski, M.M., Leonard, M., Gregory, J.S., Janjigian, A.D., Yee, C., Musser, J.M., Kreiswirth, B., Iwamoto, H., Perozzo, R., Jacobs, W.R., Jr., Sacchettini, J.C., and Fidock, D.A., J. Biol. Chem. 2003, vol. 278, pp. 20851–20859. https://doi.org/10.1074/jbc.M211968200

    Article  CAS  PubMed  Google Scholar 

  77. Ghattas, M.A., Mansour, R.A., Atatreh, N., and Bryce, R.A., Chem. Biol. Drug Des., 2016, vol. 87, pp. 131–142. https://doi.org/10.1111/cbdd.12635

    Article  CAS  PubMed  Google Scholar 

  78. Yang, J., Liu, Y., Bi, J., Cai, Q., Liao, X., Li, W., Guo, C., Zhang, Q., Lin, T., Zhao, Y., Wang, H., Liu, J., Zhang, X., and Lin, D., Mol. Microbiol., 2015, vol. 95, pp. 791–803. https://doi.org/10.1111/mmi.12892

    Article  CAS  PubMed  Google Scholar 

  79. Pandey, B., Grover, S., Tyagi, C., Goyal, S., Jamal, S., Singh, A., Kaur, J., and Grover, A., Gene, 2016, vol. 581, pp. 31–42. https://doi.org/10.1016/j.gene.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto, S., Toida, I., Watanabe, N., and Ura, T., Antimicrob. Agents Chemother., 1995, vol. 39, pp. 2088–2091. https://doi.org/10.1128/AAC.39.9.2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bergmann, K.E., Cynamon, M.H., and Welch, J.T., J. Med. Chem., 1996, vol. 39, pp. 3394–3400. https://doi.org/10.1021/jm950538t

    Article  CAS  PubMed  Google Scholar 

  82. Seitz, L.E., Suling, W.J., and Reynolds, R.C., J. Med. Chem., 2002, vol. 45, pp. 5604–5606. https://doi.org/10.1021/jm020310n

    Article  CAS  PubMed  Google Scholar 

  83. Imramovsky, A., Polanc, S., Vinsova, J., Kocevar, M., Jampilek, J., Reckova, Z., and Kaustova, J., Bioorg. Med. Chem., 2007, vol. 15, pp. 2551–2559. https://doi.org/10.1016/j.bmc.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  84. Vergara, F.M.F., Lima, C.H.S., Henriques, M.G.M.O., Cande, A.L.P., Lourenço, M.C.S., Ferreira, M.L., Kaiser, C.R., and de Souza, M.V.N., Eur. J. Med. Chem., 2009, vol. 44, pp. 4954–4959. https://doi.org/10.1016/j.ejmech.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  85. Abdel-Aziz, M. and Abdel-Rahman, H.M., Eur. J. Med. Chem., 2010, vol. 45, pp. 3384–3388. https://doi.org/10.1016/j.ejmech.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  86. Dolezal, M., Zitko, J., Osicka, Z., Kunes, J., Vejsova, M., Buchta, V., Dohna, J., Jampilek, J., and Kralova, K., Molecules, 2010, vol. 15, pp. 8567–8581. https://doi.org/10.3390/molecules15128567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zitko, J., Paterova, P., Kubicek, V., Mandikova, J., Trejtnar, F., Kunes, J., and Dolezal, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 476–479. https://doi.org/10.1016/j.bmcl.2012.11.052

    Article  CAS  PubMed  Google Scholar 

  88. Kratky, M., Vinsova, J., Novotna, E., Mandikova, J., Trejtnar, F., and Stolarikova, J., Molecules, 2013, vol. 18, pp. 3674–3688. https://doi.org/10.3390/molecules18043674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chung, W.J., Kornilov, A., Brodsky, B.H., Higgins, M., Sanchez, T., Heifets, L.B., Cynamon, M.H., and Welch, J., Tuberculosis, 2008, vol. 88, pp. 410–419. https://doi.org/10.1016/j.tube.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  90. Dolezal, M., Cmedlova, P., Palek, L., Vinsova, J., Kunes, J., Buchta, V., Jampilek, J., and Kralova, K., Eur. J. Med. Chem., 2008, vol. 43, pp. 1105–1113. https://doi.org/10.1016/j.ejmech.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  91. Dolezal, M., Palek, L., Vinsova, J., Buchta, V., Jampilek, J., and Kralova, K., Molecules, 2006, vol. 11, pp. 242–256. https://doi.org/10.3390/11040242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dolezal, M., Jampilek, J., Osicka, Z., Kunes, J., Buchta, V., and Vichova, P., Farmaco, 2003, vol. 58, pp. 1105–1111. https://doi.org/10.1016/S0014-827X(03)00163-0

    Article  CAS  PubMed  Google Scholar 

  93. Chaluvaraju, K.C. and Ishwar, B.K., Int. J. Chem Tech Res., 2010, vol. 2, no. 3, pp. 1368–1371. https://doi.org/10.4314/jfas.v8i1.9

    Article  CAS  Google Scholar 

  94. Cynamon, M.H., Speirs, R.J., and Welch, J.T., Antimicrob Agents Chemother., 1998, vol. 42, pp. 462–463. https://doi.org/10.1128/AAC.42.2.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boshoff, H.I., Mizrahi, V., and Barry, C.E. III., J. Bacteriol., 2002, vol. 184, pp. 2167–2172. https://doi.org/10.1128/JB.184.8.2167 2172.2002

    Article  CAS  Google Scholar 

  96. Ahmad, Z., Tyagi, S., Minkowski, A., Almeida D., Nuermberger, E.L., and Peck, K.M., Indian J. Med. Res., 2012, vol. 136, pp. 808–814. PMCID: PMC3573602.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cynamon, M.H., Gimi, R., Gyenes, F., Sharpe, C.A., Bergmann, K.R., and Han, H.J., J. Med. Chem., 1995, vol. 38, pp. 3902–3907. https://doi.org/10.1021/jm00020a003

    Article  CAS  PubMed  Google Scholar 

  98. Zimhony, O., Vilcheze, C., Arai, M., Welch, J.T., and Jacobs, W.R., Jr., Antimicrob. Agents Chemother., 2007, vol. 51, pp. 752–754. https://doi.org/10.1128/AAC.01369-06

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Y. and Mitchison, D., Int. J. Tuberc. Lung Dis., 2003, vol. 7, pp. 6–21. PMID: 12701830

    CAS  PubMed  Google Scholar 

  100. Unissa, N A., Sudha, S., and Selvakumar, N., Int. J. Appl. Biol. Pharm. Technol., 2011, vol. 2, pp. 19–29.

    Google Scholar 

  101. Unissa, N.A., Int. J. Pharm. Biol. Sci., 2011, vol. 1, pp. 534–555.

    Google Scholar 

  102. Zhou, S., Yang, S., and Huang, G., J. Enzyme Inhib. Med. Chem., 2017, vol. 32, no. 1, pp. 1183–1186. https://doi.org/10.1080/14756366.2017.1367774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wati, F.A., Adyarini, P.U., Fatmawati, S., and Santoso, M., Med. Chem. Res., 2020, vol. 29, pp. 2157–2163. https://doi.org/10.1007/s00044-020-02626-0

    Article  CAS  Google Scholar 

  104. Jandourek, O., Tauchman, M., Paterova, P., Konecna, K., Navratilova, L., Kubicek, V., Holas, O., Zitko, J., and Dolezal, M., Molecules, 2017, vol. 22, p. 223. https://doi.org/10.3390/molecules22020223

    Article  CAS  PubMed Central  Google Scholar 

  105. Jandourek, O., Dolezal, M., and Kunes, J., Curr. Org. Synth., 2015, vol. 12, pp. 189–196. https://doi.org/10.2174/1570179411999141106101501

    Article  CAS  Google Scholar 

  106. Bielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M., and Struga, M., Eur. J. Med. Chem. 2015, vol. 101, pp. 111–125. https://doi.org/10.1016/j.ejmech.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  107. Palomino, J.C. and Martin, A., Fut. Microbiol., 2013, vol. 8, pp. 1071–1080. https://doi.org/10.2217/fmb.13.85

    Article  CAS  Google Scholar 

  108. Zhang, Y., Post-Martens, K., and Denkin, S., Drug Discov. Today, 2006, vol. 11, pp.1–2. https://doi.org/10.1016/S1359-6446(05)03626-3

    Article  Google Scholar 

  109. Ruchita, Nanda, S., Pathak, D., and Mathur, A., Int. J. Pharm. Sci. Res., 2017, vol. 8, no. 6, pp. 2341–2359. https://doi.org/10.13040/IJPSR.0975-8232.8(6).2341-59

    Article  CAS  Google Scholar 

  110. Unissa, A.N., Hanna, E.L., and Swaminathan, S., Chem. Biol. Drug Des., 2016, vol. 87, pp. 537–550. https://doi.org/10.1111/cbdd.12684

    Article  CAS  Google Scholar 

  111. Richard O’Brien, J. and Paul Nunn, P., Am. J. Respir. Crit. Care Med., 2001, vol. 162, pp. 1055–1058. https://doi.org/10.1164/ajrccm.163.5.2007122

    Article  Google Scholar 

  112. Lienhardt, C., Vernon, A., and Raviglione, M.C., Curr. Opin. Pulm. Med., 2010, vol. 16, pp. 186–193. https://doi.org/10.1097/MCP.0b013e328337580c

    Article  CAS  PubMed  Google Scholar 

  113. Lilienkampf, A., Pieroni, M., Wan, B., Wang, Y., Franzblau, S.G., and Kozikowski, A.P., J. Med. Chem., 2010, vol. 53, pp. 678–688. https://doi.org/10.1021/jm901273n

    Article  CAS  PubMed  Google Scholar 

  114. Bavesh Kana, D. and Mizrahi, V., Tuberculosis, 2004, vol. 84, pp. 45–75. https://doi.org/10.1016/j.tube.2003.08.006

    Article  Google Scholar 

  115. Duncan, K., Tuberculosis, 2003, vol. 83, pp. 201–207. https://doi.org/10.1016/s1472-9792(02)00076-8

    Article  PubMed  Google Scholar 

  116. Dooley, K.E., Mitnick, C.D., Ann DeGroote, M., Obuku, E., Belitsky, V., and Hamilton, C.D., Clin. Infect. Dis., 2012, vol. 55, pp. 572–581. https://doi.org/10.1093/cid/cis487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are highly grateful to the school of pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India for providing technical supports and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asif.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH EHICAL STANDARDS

This article does not contain any studies involving human participants performed by any authors and does not contain any studies involving animals performed by any of these authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, S., Asif, M. Pyrazinamide Analogs Designed for Rational Drug Designing Strategies against Resistant Tuberculosis. Russ J Bioorg Chem 48, 491–512 (2022). https://doi.org/10.1134/S1068162022030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022030037

Keywords:

Navigation