Skip to main content
Log in

Schiff Base Derivatives of 4-Aminoantipyrine as Promising Molecules: Synthesis, Structural Characterization, and Biological Activities

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, some Schiff bases derived from 4-aminoantipyrine (4-AAP) (VIX) were synthesized, characterized by elemental analysis (C, H, N) and three spectral techniques (FT-IR, 1H, and 13C NMR), and then their antioxidant activity was investigated by employing four different methods. Subsequently, the inhibitory influences of the synthesized molecules against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase enzymes were tested. More importantly, the cytotoxic effects of all title molecules were also evaluated on HeLa human cervical cancer and L929 mouse fibroblast cell lines. According to the results obtained, compound (VI) (IC50: 16.82 ± 0.17 μM) showed higher ABTS cation radical scavenging activity than BHA (IC50: 17.59 ± 0.10 μM). In CUPRAC assay, it was determined that the activity ordering of the bioactive molecules has been determined as VII > X > VII > α-TOC > IX > I > II > V > VI. In AChE assay, compound (I) indicated a high potent inhibition activity with 91.75 ± 1.15% better than galanthamine. In BChE assay, compound (VII) had good BChE inhibition activity (78.76 ± 1.47%) better than galanthamine. Compound (V) showed strong tyrosinase inhibition activity with 52.85 ± 0.23% value at 200 μM concentration. Compound (III) showed the best cytotoxic effect on HeLa cells with an IC50 dose of 21.47 µM. Consequently, it can be said that some of these synthesized molecules were potentially new anti-Alzheimer drug candidate molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Salamizadeh, A., Mirzaei, T., and Ravari, A., Int. J. Commun. Based Nurs. Midwifery, 2017, vol. 5, pp. 231–238.

    Google Scholar 

  2. Maresova, P., Mohelská, H., Dolejs, J., and Kuca, K., Curr. Alzheimer Res., 2015, vol. 12, pp. 903–911. https://doi.org/10.2174/156720501209151019111448

    Article  CAS  PubMed  Google Scholar 

  3. Monroe, T., Carter, M., Feldt, K., Tolley, B., and Cowan, R.L., J. Adv. Nurs., 2012, vol. 68, pp. 2070–2078. https://doi.org/10.1111/j.1365-2648.2011.05929.x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bray, F., Laversanne, M., Weiderpass, E., and Soerjomataram, I., Cancer, 2021, vol. 127, pp. 3029–3030. https://doi.org/10.1002/cncr.33587

    Article  PubMed  Google Scholar 

  5. Al-Mulla, A., Pharma Chem., 2017, vol. 9, pp. 141–147.

    CAS  Google Scholar 

  6. Aljamali, N.M., Asian J. Chem., 2014, vol. 7, pp. 975–1006.

    Google Scholar 

  7. Zhang, Z., and Zaworotko, M.J., Chem. Soc. Rev., 2014, vol. 43, pp. 5444–5455. https://doi.org/10.1039/C4CS00075G

    Article  CAS  PubMed  Google Scholar 

  8. Adeniji, S.E., Arthur. D.E., Abdullahi. M., and Adalumo, O.B., J. Bull. Natl. Res. Cent., 2020, vol. 44, pp. 1–17. https://doi.org/10.1186/s42269-020-00386-w

    Article  Google Scholar 

  9. Shanty, A.A., Philip, J.E., Sneha, E. J., Kurup, M.P., Balachandran, S., and Mohanan, P.V., Bioorg. Chem., 2017, vol. 70, pp. 67–73. https://doi.org/10.1016/j.bioorg.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Ouerghi, O., Geesi, M.H., Kaiba, A., Al-Tamimi, A.M.S., Guionneau, P., Ibnouf, E.O., Azzallou, R., Bakht, M.A., and Riadi, Y., J. Mol. Struct., 2021, vol. 1225, p. 129166. https://doi.org/10.1016/j.molstruc.2020.129166

    Article  CAS  Google Scholar 

  11. Alam, M. S., and Lee. D.U., J. Mol. Struct., 2021, vol. 1227, p. 129512. https://doi.org/10.1016/j.molstruc.2020.129512

    Article  CAS  Google Scholar 

  12. Okey, N.C., Obasi, N. L., Ejikeme, P.M., Ndinteh, D.T., Ramasami, P., Sherif, E.S.M., Akpan, E.D., and Ebenso, E.E., J. Mol. Liq., 2020, vol. 315, p. 113773. https://doi.org/10.1016/j.molliq.2020.113773

    Article  CAS  Google Scholar 

  13. Upadhyay, A., Kar, P.K., and Dash, S., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, vol. 233, p. 118231. https://doi.org/10.1016/j.saa.2020.118231

    Article  CAS  PubMed  Google Scholar 

  14. Sakthivel, A., Jeyasubramanian, K., Thangagiri, B., Raja, J.D., J. Mol. Struct., 2020, vol. 1222, p. 128885. https://doi.org/10.1016/j.molstruc.2020.128885

    Article  CAS  Google Scholar 

  15. Fathima, S.S.A., Paulpandiyan, R., and Nagarajan, E.R., J. Mol. Struct., 2019, vol. 1178, pp. 179–191. https://doi.org/10.1016/j.molstruc.2018.10.021

    Article  CAS  Google Scholar 

  16. Teran, R., Guevara, R., Mora, J., Dobronski, L., Barreiro-Costa, O., Beske, T., Pérez-Barrera, J., Araya-Maturana, R., Rojas-Silva, P., Povedo, A., and Heredia-Moya, J., Molecules., 2019, vol. 24, p. 2696. https://doi.org/10.3390/molecules24152696

    Article  CAS  PubMed Central  Google Scholar 

  17. Raman, N., Mitu, L., Sakthivel, A., and Pandi, M.S.S., J. Iran. Chem. Soc., 2009, vol. 6, pp. 738–748. https://doi.org/10.1007/BF03246164

    Article  CAS  Google Scholar 

  18. Ocheni, A. and Clement, U., Chem. Int., 2017, vol. 3, pp. 244–249.

    CAS  Google Scholar 

  19. Tok, F., Koçyiğit-Kaymakçıoğlu, B., Sağlık, B.N., Levent, S., Özkay, Y., and Kaplancıklı, Z.A., Bioorg. Chem., 2019, vol. 84, pp. 41–50. https://doi.org/10.1016/j.bioorg.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  20. Kolcu, F., Erdener, D., and Kaya, İ., Synth. Meth., 2021, vol. 272, p. 116668. https://doi.org/10.1016/j.synthmet.2020.116668

    Article  CAS  Google Scholar 

  21. Urasa, M., and Darj, E., Afr. Health Sci., 2011, vol. 11 pp. 48–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mauricio, D., Zeybek, B., Tymon-Rosario, J., Harold, J., and Santin, A. D., Curr. Oncol. Rep., 2021, vol. 23, pp. 1–12. https://doi.org/10.1007/s11912-021-01052-8

    Article  CAS  Google Scholar 

  23. Kim, H.S., Park, S.Y., Park, C.Y., Kim, Y.T., Kim, B.J., Song, Y.J., Kim, B.G., Kim, Y.B., Cho, C.H., Kim, J.H., and Song, Y.S., Br. J. Cancer, 2021, vol. 124, pp. 375–382. https://doi.org/10.1038/s41416-020-01098-8

    Article  CAS  PubMed  Google Scholar 

  24. Hirte, H., Poon, R., Yao, X., May, T., Ethier, J.L., Petz, L., Speakman, J., and Elit, L., Crit. Rev. Oncol. Hematol., 2021, vol. 162, p. 103324. https://doi.org/10.1016/j.critrevonc.2021.103324

    Article  PubMed  Google Scholar 

  25. Zhang, H., Xu, H., Ashby, C.R., Jr., Assaraf, Y.G., Chen, Z.S., and Liu, H.M., Med. Res. Rev., 2021, vol. 41, pp. 525–555. https://doi.org/10.1002/med.21739

    Article  CAS  PubMed  Google Scholar 

  26. Chen, H., Wang, T., Huang, S., and Zeng, P., J. Cancer, 2021, vol. 12, pp. 840–848.

    Article  CAS  Google Scholar 

  27. Fang, Y.Z., Yang, S., and Wu, G., Nutrition, 2002, vol. 18, pp. 872–879. https://doi.org/10.1016/S0899-9007(02)00916-4

    Article  CAS  PubMed  Google Scholar 

  28. Bast, A., and Goris, R. J. A., Weekbl. Sci., 1989, vol. 11, pp. 199–206.

    Article  CAS  Google Scholar 

  29. Baublis, A.J., Clydesdale, F.M., and Decker, E.A., Cereal Foods World, 2000, vol. 45, pp. 71–74.

    Google Scholar 

  30. Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwart, M., and Amit, I., Cell, 2017, vol. 169, pp. 1276–1290. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  31. Möller, H.J., and Graeber, M.B., Eur. Arch. Psychiatry Clin. Neurosci., 1998, vol. 248, pp. 111–122. https://doi.org/10.1007/s004060050027

    Article  PubMed  Google Scholar 

  32. Maurer, K., Volk, S., and Gerbaldo, H., Lancet, 1997, vol. 349, pp. 1546–1549.

    Article  CAS  Google Scholar 

  33. Coyle, J.T., Price, D.L., and Delong, M.R., Science, 1983, vol. 219, pp. 1184–1190. https://doi.org/10.1126/science.6338589

    Article  CAS  PubMed  Google Scholar 

  34. Pohanka, M., Bratisl. Lek. Listy, 2018, vol. 119, pp. 535–543.

    CAS  PubMed  Google Scholar 

  35. Klugman, A., Naughton, D.P., Isaac, M., Shah, I., Petroczi, A., and Tabet, N., J. Alzheimer’s Dis., 2012, vol. 30, pp. 467–474. https://doi.org/10.3233/JAD-2012-120124

    Article  CAS  Google Scholar 

  36. Farlow, M. R. Int. J. Clin. Pract. Suppl., 2002, vol. 127, pp. 37–44.

    CAS  Google Scholar 

  37. Das, U. N., Ann. Hepatol., 2012, vol. 11, pp. 409–411.

    Article  CAS  Google Scholar 

  38. Jope, R.S., Walter-Ryan, W.G., Alarcon, R.D., and Lally, K.M., Biol. Psychiatry, 1985, vol. 20, pp. 1258–1266. https://doi.org/10.1016/0006-3223(85)90110-6

    Article  CAS  PubMed  Google Scholar 

  39. Zolghadri, S., Bahrami, A., Hassan Khan, M.T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., and Saboury, A.A., Enzyme Inhib. Med. Chem., 2019, vol. 34, pp. 279–309. https://doi.org/10.1080/14756366.2018.1545767

    Article  CAS  Google Scholar 

  40. Topal, G., Tombak, A., Yigitalp, E., Batibay, D., Kilicoglu, T., and Ocak, Y.S., J. Electron. Mater., 2017, vol. 46, p. 3958. https://doi.org/10.1007/s11664-017-5446-4

    Article  CAS  Google Scholar 

  41. Çınar, E., Başaran, E., Erdoğan, Ö., Çakmak, R., Boğa, M., and Çevik, Ö., J. Chin. Chem. Soc., 2021, pp. 1–13. https://doi.org/10.1002/jccs.202100357

  42. Paşa, S., Erdoğan, Ö., and Yenisey, Ç., J. Mol. Struct., 2019, vol. 1186, pp. 458–467. https://doi.org/10.1016/j.molstruc.2019.03.061

    Article  CAS  Google Scholar 

  43. Premnath, D., Selvakumar, P.M., Ravichandiran, P., Selvan, G.T., Indiraleka, M., Vennila., J.J., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2016, vol. 153, pp. 118–123. https://doi.org/10.1016/j.saa.2015.08.008

    Article  CAS  Google Scholar 

  44. Raiford, L.C. and Milbery, J.E., J. Am. Chem. Soc., 1934, vol. 56, pp. 2727–2729. https://doi.org/10.1021/ja01327a060

    Article  CAS  Google Scholar 

  45. Harris, C.M., Hobson, A.D., and Wilson, N.S., US Patent Application No. 12/703615, 2010.

  46. Hu, P., Zhao, K.Q., Xu, H.B., and Zhang, L.F., Chem. J. Chin. Univ., 2003, vol. 24, pp. 2195–2201.

    CAS  Google Scholar 

  47. Um, I.H., Han, H.J., Ahn, J.A., Kang, S., and Buncel, E., J. Org. Chem., 2002, vol. 67, pp. 8475–8480. https://doi.org/10.1021/jo026339g

    Article  CAS  PubMed  Google Scholar 

  48. Blois, M.S., Nature, 1958, vol. 18, pp. 1199–1200.

    Article  Google Scholar 

  49. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Free Radicals Biol. Med., 1999, vol. 26, pp. 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  50. Dinis, T.C., Madeira, V.M., and Almeida, L.M., Arch. Biochem., 1994, vol. 315, pp. 161–169. https://doi.org/10.1006/abbi.1994.1485

    Article  CAS  PubMed  Google Scholar 

  51. Apak, R., Güçlü, K., Özyürek, M., and Karademir, S.E., J. Agric. Sci., 2004, vol. 52, pp. 7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  Google Scholar 

  52. Hearing, V. J. and Jiménez, M., Int. J. Biochem., 1987, vol. 19, pp. 1141–1147. https://doi.org/10.1016/0020-711X(87)90095-4

    Article  CAS  PubMed  Google Scholar 

  53. Ellman, G.L., Courtney, K.D., Andres, V., Jr., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88–90. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  54. Bingul, M., Ercan, S., and Boğa, M., J. Mol. Struct., 2020, vol. 1213, p. 128202. https://doi.org/10.1016/j.molstruc.2020.128202

    Article  CAS  Google Scholar 

  55. Erdoğan, O., Abbak, M., Demirbolat, G.M., Birtekocak, F., Aksel, M., Paşa, S., and Cevik, O., PLoS One, 2019, vol. 14, art. e0216496. https://doi.org/10.1371/journal.pone.0216496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşit Çakmak.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the author.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Corresponding autor: phone: +90 488 217 35 94.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reşit Çakmak, Başaran, E., Boğa, M. et al. Schiff Base Derivatives of 4-Aminoantipyrine as Promising Molecules: Synthesis, Structural Characterization, and Biological Activities. Russ J Bioorg Chem 48, 334–344 (2022). https://doi.org/10.1134/S1068162022020182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022020182

Keywords:

Navigation