Skip to main content
Log in

Development of a Humanized Antibody 5D3Hu against the PRAME Tumor Antigen

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The PRAME antigen, which is a significant target for monoclonal antibodies, is a tumor-specific marker that is active at all stages of tumor cell differentiation; it induces a spontaneous T-cell response. In this work, a humanized 5D3Hu antibody was constructed on the basis of the mouse monoclonal antibody 5D3 to the PRAME protein and produced in CHO (Chinese hamster ovary tumor) cells. The 5D3Hu antibody demonstrated high affinity for the antigen (1.4 nM), binding to both recombinant and native PRAME protein; it also had an inhibitory effect on the proliferation of PRAME-positive cell lines. These results allow considering the humanized 5D3Hu antibody as a promising therapeutic agent for the treatment of oncological diseases in which overexpression of the PRAME protein is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Epping, M.T. and Bernards, R., Cancer Res., 2006, vol. 66, pp. 10639–10642. https://doi.org/10.1158/0008-5472.CAN-06-2522

    Article  CAS  PubMed  Google Scholar 

  2. Hero, B., Spitz, R., Berthold, F., and Fischer, M., Clin. Cancer Res., 2004, vol. 10, pp. 4307–4313. https://doi.org/10.1158/1078-0432.CCR-03-0813

    Article  PubMed  Google Scholar 

  3. Wadelin, F., Fulton, J., McEwan, P.A., Spriggs, K.A., Emsley, J., and Heery, D.M., Mol. Cancer, 2010, vol. 9, pp. 1–10. https://doi.org/10.1186/1476-4598-9-226

    Article  CAS  Google Scholar 

  4. Proto-Siqueira, R., Figueiredo-Pontes, L.L., Panepucci, R.A., Garcia, A.B., Rizzatti, E.G., Nascimento, F.M., Ishikawa, H.C.F., Larson, R.E., Falcao, R.P., Simpson, A.J., Gout, I., Filonenko, V., Rego, E.M., and Zago, M.A., Leukemia Res., 2006, vol. 30, pp. 1333–1339. https://doi.org/10.1016/j.leukres.2006.02.031

    Article  CAS  Google Scholar 

  5. Deceunynck, C., Mellerin, M.P., Labarrière, N., Jego, G., Moreau-Aubry, A., Harousseau, J.L., Jotereau, F., and Bataille, R., Eur. J. Immunol., 2000, vol. 30, pp. 803–809. https://doi.org/10.1002/1521-4141(200003)30:3<803::AID-IMMU803>3.0.CO;2-P

    Article  Google Scholar 

  6. Roszik, J., Wang, W.-L., Livingston, J.A., Roland, C.L., Ravi, V., Yee, C., Hwu, P., Futreal, A., Lazar, A.J., Patel, S.R., and Conley, A.P., Clin. Sarcoma Res., 2017, vol. 7, pp. 1–7. https://doi.org/10.1186/s13569-017-0077-3

    Article  CAS  Google Scholar 

  7. Al-Khadairi, G. and Decock, J., Cancers, 2019, vol. 11, p. 984. https://doi.org/10.3390/cancers11070984

    Article  CAS  PubMed Central  Google Scholar 

  8. Xu, Y., Zou, R., Wang, J., Wang, Z.W., and Zhu, X., Cell Proliferation, 2020, vol. 53, art. ID e12770. https://doi.org/10.1111/cpr.12770

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ikeda, H., Lethe, B., Lehmann, F., van Baren, N., Baurain, J.F., de Smet, C., Chambost, H., Vitale, M., Moretta, A., Boon, T., and Coulie, P.G., Immunity, 1997, vol. 6, pp. 199–208. https://doi.org/10.1016/s1074-7613(00)80426-4

    Article  CAS  PubMed  Google Scholar 

  10. Pankov, D., Sjostrom, L., Kalidindi, T., Lee, S.G., Sjostrom, K., Gardner, R., McDevitt, M.R., O’Reilly, R., Thorek, D.L., Larson, S.M., and Veach, D., Oncotarget, 2017, vol. 8, p. 65917. https://doi.org/10.1016/s1074-7613(00)80426-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fagnani, R., Immunol. Ser., 1994, vol. 61, pp. 3–22.

    CAS  PubMed  Google Scholar 

  12. Khazaeli, M.B., Conry, R.M., and LoBuglio, A.F., J. Immunother. Emphasis Tumor Immunol., 1994, vol. 15, pp. 42–52. https://doi.org/10.1097/00002371-199401000-00006

    Article  CAS  PubMed  Google Scholar 

  13. Kuus-Reichel, K., Grauer, L.S., Karavodin, L.M., Knott, C., Krusemeier, M., and Kay, N.E., Clin. Diagn. Lab. Immunol., 1994, vol. 4, pp. 365–372. https://doi.org/10.1128/cdli.1.4.365-372.1994

    Article  Google Scholar 

  14. Mateo, C., Moreno, E., Amour, K., Lombardero, J., Harris, W., and Perez, R., Immunotechnology, 1997, vol. 3, pp. 71–81. https://doi.org/10.1016/s1380-2933(97)00065-1

    Article  CAS  PubMed  Google Scholar 

  15. Stephens, S., Emtage, S., Vetterlein, O., Chaplin, L., Bebbington, C., Nesbitt, A., Sopwith, M., Athwal, D., Novak, C., and Bodmer, M., Immunology, 1995, vol. 85, pp. 668–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Misyurin, V.A., Finashutina, Yu.P., Turba, A.A., Larina, M.V., Solopova, O.N., Lyzhko, N.A., Kesaeva, L.A., Kasatkina, N.N., Aliev, T.K., Misyurin, A.V., and Kirpichnikov, M.P., Dokl. Biochem. Biophys., 2020, vol. 492, no. 1, pp. 135–138. https://doi.org/10.1134/S1607672920030072

    Article  CAS  PubMed  Google Scholar 

  17. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G., and Stevens, R.C., Science, 1997, vol. 276, pp. 1665–1669. https://doi.org/10.1126/science.276.5319.1665

    Article  CAS  PubMed  Google Scholar 

  18. Zimmermann, J., Oakman, E.L., Thorpe, I.F., Shi, X., Abbyad, P., Brooks, C.L., Boxer, S.G., and Romesberg, F.E., Proc. Natl. Acad. Sci. U. S. A., vol. 103, pp. 13722–13727. https://doi.org/10.1073/pnas.0603282103

  19. Kabat, E.A., Sequences of Immunological Interest, Bethesda, Md, USA: Public Health Service, NIH, 1991, 5th ed.

    Google Scholar 

  20. Foote, J. and Winter, G., J. Mol. Biol., 1992, vol. 224, pp. 487–499. https://doi.org/10.1016/0022-2836(92)91010-m

    Article  CAS  PubMed  Google Scholar 

  21. Queen, C., Schneider, W.P., Selick, H.E., Payne, P.W., Landolfi, N.F., Duncan, J.F., Avdalovic, N.M., Levitt, M., Junghans, R.P., and Waldmann, T.A., Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, pp. 10029–10033. https://doi.org/10.1073/pnas.86.24.10029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makabe, K., Nakanishi, T., Tsumoto, K., Tanaka, Y., Kondo, H., Umetsu, M., Sone, Y., Asano, R., and Kumagai, I., J. Biol. Chem., 2008, vol. 283, pp. 1156–1166. https://doi.org/10.1074/jbc.M706190200

    Article  CAS  PubMed  Google Scholar 

  23. Weitzner, B.D., Jeliazkov, J.R., Lyskov, S., Marze, N., Kuroda, D., Frick, R., Adolf-Bryfogle, A., Biswas, N., and Gray, J.J., Nat. Protoc., 2017, vol. 12, pp. 401–416. https://doi.org/10.1038/nprot.2016.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX, 2015, vols. 1–2, pp. 19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  25. Finashutina, Yu.P., Misyurin, A.V., Akhlynina, T.V., Lyzhko, N.A., Krutov, A.A., Aksenova, E.V., Misyurin, V.A., and Baryshnikov, A.Yu., Ross. Bioterapevticheskii Zh., 2015, vol. 14, no. 3, pp. 29–36.

    Google Scholar 

  26. Larina, M.V., Yakimov, S.A., Dolgikh, D.A., Kirpichnikov, M.P., Aliev, T.K., Solopova, O.N., Pozdnyakova, L.P., Sveshnikov, P.G., and Korobova, S.V., J. Bioorg. Chem., 2015, vol. 41, pp. 280–288. https://doi.org/10.1134/S106816201503005X

    Article  CAS  Google Scholar 

  27. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Center for collective use of high-throughput computational resources of Moscow State University.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1249 of 10.06.2019, unique identifier RFMEFI60418X0204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Larina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or animals as research objects.

Conflict of Interests

The authors declare no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: mAb, monoclonal antibodies; CDR, complementarity determining regions; CH, constant domains of immunoglobulin heavy chains; CHO, Chinese hamster ovary cancer cells; FR, framework regions; PBS, phosphate-buffered saline; PBST, Tween-20 supplemented PBS; PRAME, PReferentially expressed Antigen in MElanoma; VH and VL, variable domains of heavy and light chains of immunoglobulins.

Corresponding author: phone: +7 (916) 179-25-09.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, M.V., Finashutina, Y.P., Lyzhko, N.A. et al. Development of a Humanized Antibody 5D3Hu against the PRAME Tumor Antigen. Russ J Bioorg Chem 48, 360–371 (2022). https://doi.org/10.1134/S1068162022020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022020133

Keywords:

Navigation