Skip to main content
Log in

Recombinant Production of Hispidin-3-Hydroxylase: the Key Enzyme in Fungal Luciferin Biosynthesis

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Bioluminescence is a phenomenon of light emission resulting from oxidation of a substrate, luciferin, catalyzed by the enzyme luciferase. The fungus Neonothopanus nambi is the first eukaryotic organism with a fully deciphered bioluminescent system: the structure of luciferin was established, the luciferase gene was described, and intermediates and enzymes involved in the luciferin biosynthesis pathway were identified. One of the crucial reactions in this pathway is the formation of luciferin by hydroxylation of hispidin catalyzed by hispidin-3-hydroxylase (nnH3H). To fully understand the mechanism of action and substrate specificity of the enzyme, it is necessary to carry out structural studies of the molecule. To do that, it is necessary to develop a protocol for obtaining a highly purified and functionally active nnH3H in the appropriate quantities. We describe a robust approach to produce a soluble and enzymatically active nnH3H fused with SUMO and coexpressed with GroEL/ES chaperonin at low temperature in Escherichia coli. The yield of recombinant nnH3H achieved was 20 mg per 100 mL of bacterial culture. Additionally, we show for the first time that FAD is a cofactor of fungal hispidin-3-hydroxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kaskova, Z.M., Tsarkova, A.S., and Yampolsky, I.V., Chem. Soc. Rev., 2016, vol. 45, pp. 6048–6077. https://doi.org/10.1039/C6CS00296J

    Article  CAS  PubMed  Google Scholar 

  2. Oba, Y., Stevani, C.V., Oliveira, A.G., Tsarkova, A.S., Chepurnykh, T.V., and Yampolsky, I.V., Photochem. Photobiol., 2017, vol. 93, pp. 405–415. https://doi.org/10.1111/php.12704

    Article  CAS  PubMed  Google Scholar 

  3. Kotlobay, A.A., Sarkisyan, K.S., Mokrushina, Y.A., Marcet-Houben, M., Serebrovskaya, E.O., Markina, N.M., Somermeyer, L.G., Gorokhovatsky, A.Y., Vvedensky, A., Purtov, K.V., Petushkov, V.N., Rodionova, N.S., Chepurnyh, T.V., Fakhranurova, L.I., Guglya, E.B., Ziganshin, R., Tsarkova, A.S., Kaskova, Z.M., Shender, V., Abakumov, M., Abakumova, T.O., Povolotskaya, I.S., Eroshkin, F.M., Zaraisky, A.G., Mishin, A.S., Dolgov, S.V., Mitiouchkina, T.Y., Kopantzev, E.P., Waldenmaier, H.E., Oliveira, A.G., Oba, Y., Barsova, E., Bogdanova, E.A., Gabaldon, T., Stevani, C.V., Lukyanov, S., Smirnov, I.V., Gitelson, J.I., Kondrashov, F.A., and Yampolsky, I.V., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. x12728–12732. https://doi.org/10.1073/pnas.1803615115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medvedev, K.E., Kinch, L.N., Schaeffer, R.D., and Grishin, N.V., PLoS Comput. Biol., 2019, vol. 15. e1007569. https://doi.org/10.1371/journal.pcbi.1007569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosano, G.L. and Ceccarelli, E.A., Front. Microbiol., 2014, vol. 5, p. 172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCoy, J. and Lavallie, E., Curr. Protoc. Mol. Biol., 2001, chapter 16, unit 16.8. https://doi.org/10.1002/0471142727.mb1608s28

  7. Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., and Lv, J., Microb. Cell Fact., 2018, vol. 17, p. 50. https://doi.org/10.1186/s12934-018-0894-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butt, T.R., Edavettal, S.C., Hall, J.P., and Mattern, M.R., Protein Expr. Purif., 2005, vol. 43, pp. 1–9. https://doi.org/10.1016/j.pep.2005.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi, H., Yoshida, T., and Inouye, M., Appl. Environ. Microbiol., 2009, vol. 75, pp. 5356–5362. https://doi.org/10.1128/AEM.00691-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamppa, J.W., Tanyos, S.A., and Griswold, K.E., J. Biotechnol., 2013, vol. 164, pp. 1–8. https://doi.org/10.1016/j.jbiotec.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  11. Mossessova, E. and Lima, C.D., Mol. Cell, 2000, vol. 5, pp. 865–876. https://doi.org/10.1016/s1097-2765(00)80326-3

    Article  CAS  PubMed  Google Scholar 

  12. Loomans, E.E., Roelen, A.J., Van Damme, H.S., Bloemers, H.P., Gribnau, T.C., and Schielen, W.J., J. Immunol. Methods, 1995, vol. 184, pp. 207–217. https://doi.org/10.1016/0022-1759(95)00089-s

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2012, 4th ed.

    Google Scholar 

  14. Kurien, B.T. and Scofield, R.H., BioTechniques, 1995, vol. 18, pp. 1023–1026.

    CAS  PubMed  Google Scholar 

  15. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  Google Scholar 

  16. Zeder-Lutz, G., Cherouati, N., Reinhart, C., Pattus, F., and Wagner, R., Protein Expr. Purif., 2006, vol. 50, pp. 118–127. https://doi.org/10.1016/j.pep.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  17. Goffin, P., Dewerchin, M., De Rop, P., Blais, N., and Dehottay, P., Biotechnol. J., 2017, vol. 12. https://doi.org/10.1002/biot.201700168

  18. Bubyrev, A.I., Tsarkova, A.S., and Kaskova, Z.M., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 183–185. https://doi.org/10.1134/S106816201902002X

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Russian Foundation for Basic Research (grant No. 18-34-20134) and the grant of the President of the Russian Federation for state support of the leading scientific schools of the Russian Federation No. NSH-2605.2020.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gerasimov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article does not contain a description of research carried out by any of the authors of this work, involving humans or using animals as objects.

Conflict of Interests

I.V. Yampolsky is the founder of Planta LLC. Planta has applied for patents related to the use of components of the fungal bioluminescent system. A.S. Gerasimov, S.O. Rogozhkin, E.S. Shakhova, T.V. Chepurnykh, A. Yu. Gorokhovatsky, N.M. Myshkina and A.V. Balakireva declare no conflict of interest.

Additional information

Abbreviations: nnH3H, hispidin-3-hydroxylase N. nambi; Kd, dissociation constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, A.S., Rogozhkin, S.O., Shakhova, E.S. et al. Recombinant Production of Hispidin-3-Hydroxylase: the Key Enzyme in Fungal Luciferin Biosynthesis. Russ J Bioorg Chem 47, 1066–1076 (2021). https://doi.org/10.1134/S1068162021040099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021040099

Keywords:

Navigation