Skip to main content
Log in

Inhibition of Phosphotidylcholine Liposome Oxidation by Phenolics from Aloe Extracts: A. arborescens, A. pillansii, and A. squarrosa

  • LOW-MOLECULAR-WEIGHT COMPOUNDS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Various species from the genus Aloe, which there are more than 500 in the world, are considered to be important sources of biologically active compounds, and their numerous biological qualities are attracting research interest. Of Aloe species, A. arborescens and A. vera are the most studied and used; however, some other species from this genus exhibit no less biological activity, in particular, antioxidant activity, than these two. In this work, the antioxidant activity of extracts obtained from A. аrborescens, A. pillansii, and A. squarrosa leaves is evaluated and compared using the model of initiated oxidation of phosphotidylcholine liposomes, and their total phenolic content is determined. The antioxidant activity of A. pillansii extract was ~12 and 4 times greater than that of A. arborescens and A. squarrosa, respectively. However, the difference in the total phenolic content of these extracts is not so large, suggesting that A. pillansii leaves may have a more complex antioxidant profile and a higher concentration of active phenolic metabolites than does A. arborescens. The findings of this study inspire further research into the biological activity of A. pillansii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Salehi, B., Albayrak, S., Antolak, H., Kręgiel, D., Pawlikowska, E., Sharifi-Rad, M., Uprety, Y., Tsouh Fokou, P.V., Yousef, Z., Amiruddin Zakaria, Z., Varoni, E.M., Sharopov, F., Martins, N., Iriti, M., and Sharifi-Rad, J., Aloe genus plants: From farm to food applications and phytopharmacotheropy, Int. J. Mol. Sci., 2018, vol. 19, p. 2843. https://doi.org/10.3390/ijms19092843

    Article  CAS  PubMed Central  Google Scholar 

  2. Sazhina, H.H., Lapshin, P.V., Zagoskina, N.V., and Misin, V.M., Comparative study of the antioxidant properties of extracts of various Aloe species, Khim. Rastit. Syr’ya, 2015, no. 2, pp. 169–176.  https://doi.org/10.14258/jcprm.201502527

  3. McClements, D.J., Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds, New York: CRC Press Taylor and Francis Group, 2014, pp. 548–620.

    Book  Google Scholar 

  4. Thomas, A.H., Catala, A., and Vignoni, M., Soybean phosphotidylcholine liposomes as model membranes to study lipid peroxidation photoiduced by pterin, Biochim. Biophys. Acta, 2016, vol. 1858, pp. 139–145.  https://doi.org/10.1016/jbbamem.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Mosca, M., Cerlie, A., and Ambrosone, L., Effect of membrane composition on lipid oxidation in liposomes, Chem. Phys. Lipids, 2011, vol. 164, pp. 158–165. https://doi.org/10.1016/j.chemphyslip.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  6. Palmina, N.P., Maltseva, E.L., Chasovskaya, T.E., Kasparov, V.V., Bogdanova, N.G., Menshov, V.A., and Trofimov, A.V., Effects of different phases of cigarette smoke on lipid peroxidation and membrane structure in liposomes, Aust. J. Chem., 2014, vol. 67, pp. 858–866. https://doi.org/10.1071/CH13663

    Article  CAS  Google Scholar 

  7. Altunkaya, A., Gokmen, V., and Skibsted, L.H., pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants, Food Chem., 2016, vol. 190, pp. 25–32.  https://doi.org/10.1016/j.foodchem.2015.63.069

    Article  CAS  PubMed  Google Scholar 

  8. Lokhmatikov, A.V., Voskoboynikova, N., Cherepanov, D.A., Skulachev, M.V., Steihoff, H.J., Skulachev, V.P., Armen, Y., and Mulkidjanian, A.Y., Impact of antioxidants on cardiolipin oxidation in liposomes: Why mitochondrial cardiolipin serves as an apoptotic signal?, Oxid. Med. Cell. Longevity, 2016, vol. 1, pp. 1–19.  https://doi.org/10.1155/2016/8679469

    Article  CAS  Google Scholar 

  9. Kuznetsova, N., Kandyba, A., Vostrov, V., Kadykov, V., Gaenko, G., and Vodovozova, E., Liposoms loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles, J. Drug Deliv. Sci. Technol., 2009, vol. 19, no. 1, pp. 51–59. https://doi.org/10.1016/S1773-2247(09)50007-X

    Article  CAS  Google Scholar 

  10. Semenova, M.G., Antipova, A.S., Misharina, T.A., Alinkina, E.S., Zelikina, D.V., Martirosova, E.I., Palmina, N.P., Binyukov, V.I., Maltseva, E.L., Kasparov, V.V., Ozerova, N.S., Shumilina, E.A., Baeva, K.A., and Bogdanova, N.G., Role of the covalent conjugate (sodium caseinate + maltodextrin) and a plant antioxidant in the protection against oxidation of the composite food ingredients, containing the equimass amount of ω-3 and ω-6 polyunsaturated fatty acids, in Gums and Stabilisers for the Food Industry 18: Hydrocolloid Functionality for Affordable and Sustainable Global Food Solutions, Cambridge, Publ.: Royal Society of Chemistry, 2016, pp. 182–189.

  11. Sazhina, N.N., Antipova, A.S., Semenova, M.G., and Palmina, N.P., Initiated oxidation of phosphatidylcholine liposomes with some functional nutraceuticals, Russ. J. Bioorg. Chem., 2019, vol. 45, no. 1, pp. 34–41. https://doi.org/10.1134/S1068162019010138

    Article  CAS  Google Scholar 

  12. Zaprometov, M.N., Fenol’nyye soedineniya i metody ikh issledovaniya. Biokhimicheskie metody v fiziologii rastenii (Phenolic Compounds and Methods for Their Study. Biochemical Methods in Plant Physiology), Moscow, 1971, pp. 185–197.

    Google Scholar 

  13. Gutterman, Y. and Chauser-Volfson, E., The distribution of the phenolic metabolites barbaloin, aloeresin and aloenin as a peripheral defense strategy in the succulent leaf parts of Aloe arborescens, Biochem. Syst. Ecol., 2000, vol. 28, no. 9, pp. 825–838.

    Article  CAS  Google Scholar 

  14. Olennikov, D.N., Zilfikarov, I.N., and Ibragimov, T.A., Investigation of the chemical composition of Aloe arborescens Mill., Khim. Rastit. Syr’ya, 2010, no. 3, pp. 77–82.

  15. Lucinia, L., Pellizzonia, M., Pellegrinob, R., Molinaria, G.P., and Collac, G., Phytochemical constituents and in vitro radical scavenging activity of different Aloe species, Food Chem., 2015, vol. 170, pp. 501–507.  https://doi.org/10.1016/j.foodchem.2014.08.034

    Article  CAS  Google Scholar 

  16. Olennikov, D.N., Zilfikarov, I.N., Ibragimov, T.A., Toropova, A.A., and Tankhayeva, L.M., The chemical composition of the Aloe arborescens Mill. juice and its antioxidant activity (in vitro), Khim. Rastit. Syr’ya, 2010, no. 3, pp. 83–90.

  17. McPherson, P.A.C., Bole, A., Cruz, K.A., Young, I.S., and McEneny, J., Curvilinear approach to the kinetic analysis of linoleate peroxidation in aqueous liposomes by 2,2′-azobis(amidoinopropane) dihydrochloride, Chem. Phys. Lipids, 2012, vol. 165, pp. 682–688. https://doi.org/10.1016/j.chemphyslip.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Derffel', K., Statistika v analiticheskoi khimii (Statistics in Analytical Chemistry), Moscow, 1994.

    Google Scholar 

  19. Seyoum, A., Asres, K., and El-Fiky, F.K., Structure-radical scavenging relationships of flavonoids, Phytochemistry, 2006, vol. 67, pp. 2058–2070. https://doi.org/10.4236/ns.2018.104014

    Article  CAS  PubMed  Google Scholar 

  20. Hu, H., Hu, X., and Qiuhui, H., Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts, J. Agricult. Food Chem., 2003, vol. 51, pp. 7788–7791.  https://doi.org/10.1021/jf034255i

    Article  CAS  Google Scholar 

  21. Huang, D., Ou, B., Hampsch-Woodil, M., Flanagan, J., and Prior, R., High throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96 well format, J. Agricult. Food Chem., 2002, vol. 50, pp. 4437–4444. https://doi.org/10.1021/jf0201529

    Article  CAS  Google Scholar 

  22. Lee, S., Do, S.G., Kim, S.Y., Kim, J., Jin, Y., and Lee, C.H., Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera (Aloe barbadensis Miller) in different growth stages, J. Agricult. Food Chem., 2012, vol. 60, pp. 11 222–11 228. https://doi.org/10.1021/jf3026309

  23. Emanuel’, N.M., Denisov, E.T., and Maizus, Z.K., Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze (Chain Reactions of Oxidation of Hydrocarbons in the Liquid Phase), Moscow, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sazhina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The work does not involve experiments on animals or humans.

Conflict of Interests

Authors declare they have no conflicts of interests.

Additional information

Translated by A. Kukharuk

Abbreviations: PC, phosphatidylcholine; TEAC, trolox equivalent antioxidant capacity; TPC, total phenolic content; CD, conjugated dienes; AAPH, 2,2'-azobis(2-amidinopropane) dihydrochloride; DPPH, 2,2-diphenyl-1-picrylhydrazyl; and ORAC, oxygen-radical absorbing capacity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhina, N.N., Lapshin, P.V., Zagoskina, N.V. et al. Inhibition of Phosphotidylcholine Liposome Oxidation by Phenolics from Aloe Extracts: A. arborescens, A. pillansii, and A. squarrosa . Russ J Bioorg Chem 46, 1385–1389 (2020). https://doi.org/10.1134/S1068162020070146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020070146

Keywords:

Navigation