Skip to main content
Log in

Bacterial Production and Structural Study of Human Neuromodulator Lynx2

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The human protein Lynx2 belongs to the Ly6/uPAR family of “three-finger” proteins and is associated with the cell membrane by the glycosylphosphatidylinositol (GPI) anchor. Lynx2 is expressed in the brain areas responsible for anxiety level control: prefrontal cortex, basolateral tonsil, hippocampus, and medial dorsal nucleus of the thalamus; it probably participates in anxiety regulation by interaction with α4β2 nicotinic acetylcholine receptor. Currently, the nature of the Lynx2 interaction with the receptor is unknown. We developed a bacterial expression system for production of a Lynx2 water-soluble domain (ws-Lynx2). The protein was obtained in the form of E. coli cytoplasmic inclusion bodies, with subsequent solubilization under denaturing conditions and renaturation. Production of milligram quantities of the 13С-15N-labeled variant of ws-Lynx2 made it possible to characterize the secondary structure of this protein by means of heteronuclear NMR spectroscopy. It was shown that ws-Lynx2 has structure typical for three-finger proteins from the Ly6/uPAR family with some unique features, such as helical elements in the first and third loops. Development of the effective recombinant production system opens up new horizons for further structural and functional studies of Lynx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Loughner, C.L., Bruford, E.A., McAndrews, M.S., Delp, E.E., Swamynathan, S., and Swamynathan, S.K., Hum. Genomics, 2016, p. 10. https://doi.org/10.1186/s40246-016-0074-2

  2. Vasilyeva, N.A., Loktyushov, E.V., Bychkov, M.L., Shenkarev, Z.O., and Lyukmanova, E.N., Biochemistry (Moscow), 2017, vol. 82, pp. 1702–1715. https://doi.org/10.1134/S0006297917130090

    Article  CAS  PubMed  Google Scholar 

  3. Miwa, J.M., Iban̆ez-Tallon, I., Crabtree, G.W., Sanchez, R., Šali, A., Role, L.W., and Heintz, N., Neuron, 1999, vol. 23, pp. 105–114. https://doi.org/10.1016/S0896-6273(00)80757-6

    Article  CAS  PubMed  Google Scholar 

  4. Adermann, K., Wattler, F., Wattler, S., Heine, G., Meyer, M., Forssmann, W.-G., and Nehls, M., Protein Sci., 2008, vol. 8, pp. 810–819. https://doi.org/10.1110/ps.8.4.810

    Article  Google Scholar 

  5. Tsuji, H., Okamoto, K., Matsuzaka, Y., Iizuka, H., Tamiya, G., and Inoko, H., Genomics, 2003, vol. 81, pp. 26–33. https://doi.org/10.1016/S0888-7543(02)00025-3

    Article  CAS  PubMed  Google Scholar 

  6. Maher, M.P., Matta, J.A., Gu, S., Seierstad, M., and Bredt, D.S., Neuron, 2017, vol. 96, pp. 989–1001. https://doi.org/10.1016/j.neuron.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Shenkarev, Z.O., Shulepko, M.A., Bychkov, M.L., Kulbatskii, D.S., Shlepova, O.V., Vasilyeva, N.A., Andreev-Andrievskiy, A.A., Popova, A.S., Lagereva, E.A., Loktyushov, E.V., Koshelev, S.G., Thomsen, M.S., Dolgikh, D.A., Kozlov, S.A., Balaban, P.M., Kirpichnikov, M.P., and Lyukmanova, E.N., J. Neurochem., 2020 (in press). https://doi.org/10.1111/jnc.150188

  8. Dessaud, E., Salaun, D., Gayet, O., and Chabbert, M., Mol. Cell. Neurosci., 2006, vol. 31, pp. 232–242. https://doi.org/10.1016/j.mcn.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  9. Tekinay, A.B., Nong, Y., Miwa, J.M., Lieberam, I., Ibanez-Tallon, I., Greengard, P., and Heintz, N., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 4477–4482. https://doi.org/10.1073/pnas.0813109106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu, M., Puddifoot, C.A., Taylor, P., and Joiner, W.J., J. Biol. Chem., 2015, vol. 290, pp. 24 509–24 518. https://doi.org/10.1074/jbc.M115.647248

    Article  CAS  Google Scholar 

  11. Nichols, W.A., Henderson, B.J., Yu, C., Parker, R.L., Richards, C.I., Lester, H.A., and Miwa, J.M., J. Biol. Chem., 2014, vol. 289, pp. 31 423–31 432. https://doi.org/10.1074/jbc.M114.573667

    Article  CAS  Google Scholar 

  12. Bencan, Z. and Levin, E.D., Physiol. Behav., 2008, vol. 95, pp. 408–412. https://doi.org/10.1016/j.physbeh.2008.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lyukmanova, E.N., Shulepko, M.A., Shenkarev, Z.O., Dolgikh, D.A., and Kirpichnikov, M.P., Russ. J. Bioorg. Chem., 2010, vol. 36, pp. 137–145. https://doi.org/10.1134/S1068162010020019

    Article  CAS  Google Scholar 

  14. Lyukmanova, E.N., Shulepko, M.A., Tikhonov, R.V., Shenkarev, Z.O., Paramonov, A.S., Wulfson, A.N., Kasheverov, I.E., Ustich, T.L., Utkin, Y.N., Arseniev, A.S., Tsetlin, V.I., Dolgikh, D.A., and Kirpichnikov, M.P., Biochemistry (Moscow), 2009, vol. 74, pp. 1142–1149. https://doi.org/10.1134/S0006297909100101

    Article  CAS  PubMed  Google Scholar 

  15. Shulepko, M.A., Lyukmanova, E.N., Shenkarev, Z.O., Dubovskii, P.V., Astapova, M.V., Feofanov, A.V., Arseniev, A.S., Utkin, Y.N., Kirpichnikov, M.P., and Dolgikh, D.A., Protein Expr. Purif., 2017, vol. 130, pp. 13–20. https://doi.org/10.1016/j.pep.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  16. Jiménez-Vargas, J.M., Quintero-Hernández, V., González-Morales, L., Ortiz, E., and Possani, L.D., Toxicon, 2017, vol. 128, pp. 5–14. https://doi.org/10.1016/j.toxicon.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  17. Lyukmanova, E.N., Shenkarev, Z.O., Schulga, A.A., Ermolyuk, Y.S., Mordvintsev, D.Yu., Utkin, Y.N., Shoulepko, M.A., Hogg, R.C., Bertrand, D., Dolgikh, D.A., Hogg, R.C., Bertrand, D., Dolgikh, D.A., Tsetlin, V.I., and Kirpichnikov, M.P., J. Biol. Chem., 2007, vol. 282, pp. 24 784–24 791. https://doi.org/10.1074/jbc.M611263200

    Article  CAS  Google Scholar 

  18. Shulepko, M.A., Lyukmanova, E.N., Kasheverov, I.E., Dolgikh, D.A., Tsetlin, V.I., and Kirpichnikov, M.P., Russ. J. Bioorg. Chem., 2011, vol. 37, pp. 543–549. https://doi.org/10.1134/S1068162011050165

    Article  CAS  Google Scholar 

  19. Shulepko, M.A., Lyukmanova, E.N., Paramonov, A.S., Lobas, A., Shenkarev, Z.O., Kasheverov, I.E., Dolgikh, D.A., Tsetlin, V.I., Arseniev, A.S., and Kirpichnikov, M.P., Biochemistry (Moscow), 2013, vol. 78, pp. 204–211. https://doi.org/10.1134/S0006297913020090

    Article  CAS  PubMed  Google Scholar 

  20. Lyukmanova, E.N., Shulepko, M.A., Bychkov, M.L., Shenkarev, Z.O., Paramonov, A.S., Chugunov, A.O., Kulbatskii, D.S., Avarinidi, M., Dolejsi, E., Schaer, T., Arseniev, A.S., Efremov, R.G., Thomsen, M.S., Dolezal, V., Bertrand, D., Dolgikh, D.A., and Kirpichnikov, M.P., Sci Rep., 2016, vol. 6, p. 30 698. https://doi.org/10.1038/srep30698

    Article  CAS  Google Scholar 

  21. Paramonov, A.S., Kulbatskii, D.S., Loktyushov, E.V., Tsarev, A.V., Dolgikh, D.A., Shenkarev, Z.O., Kirpichnikov, M.P., and Lyukmanova, E.N., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 644–652. https://doi.org/10.1134/S1068162017060127

    Article  CAS  Google Scholar 

  22. Fletcher, C.M., Harrison, R.A., Lachmann, P.J., and Neuhaus, D., Structure, 1994, vol. 2, pp. 185–199.

    Article  CAS  Google Scholar 

  23. Garza-Garcia, A., Harris, R., Esposito, D., Gates, P.B., and Driscoll, P.C., PLoS One, 2009, vol. 4, e7123. https://doi.org/10.1371/journal.pone.0007123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rule, G.S. and Hitchens, K.T., Fundamentals of Protein NMR Spectroscopy, Dordrecht: Springer, 2006.

    Google Scholar 

  25. Shen, Y. and Bax, A., J. Biomol. NMR, 2013, vol. 56, pp. 227–241. https://doi.org/10.1007/s10858-013-9741-y.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-74-20176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Lyukmanova.

Ethics declarations

The article contains no studies involving human or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: DTT, dithiothreitol (1,4-bis(sulfanyl)butane-2,3-diol); IPTG, isopropyl β-D-1-thiogalactopyranoside; NOE, nuclear Overhauser effect; GPI, glycosylphosphatidylinositol; GSH and GSSG, reduced and oxidized forms of glutathione; nAChR, nicotinic acetylcholine receptor.

Corresponding author: phone: +7 (495) 336-80-11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramonov, A.S., Shulepko, M.A., Kocharovskaya, M.V. et al. Bacterial Production and Structural Study of Human Neuromodulator Lynx2. Russ J Bioorg Chem 46, 1261–1269 (2020). https://doi.org/10.1134/S1068162020060230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020060230

Keywords:

Navigation