Skip to main content
Log in

Polysaccharide-Degrading Activity in Marine and Terrestrial Strains of Mycelial Fungi

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The activity of extracellular polysaccharide-degrading enzymes and glycosidases from mycelial fungi towards various carbohydrates and carbohydrate derivatives from plant and algal cell walls has been screened. Twenty-three strains of mycelial fungi isolated from the marine sediment and dung were grown by submerged cultivation on a plant-based substrate (a by-product of the grain processing industry) for previous screening for their biomass and protein productivity. Molecular identification allowed for the assignment of marine fungal strains to the following species: Sirastachys phyllophila, Ochroconis mirabilis, Pseudallescheria boydii, Pseudallescheria ellipsoidea, Beauveria felina, Scopulariopsis brevicaulis, Cladosporium sp., and Trichoderma sp. The terrestrial strains belonged to the species Thermomyces thermophilus, Thermomyces dupontii, Thermomyces lanuginosus, Fusarium avenaceum, Mycothermus thermophilum, and Thermothelomyces thermophila. Seven strains of thermophilic terrestrial fungal species T. thermophila, T. thermophilus, T. dupontii and M. thermophilus and two marine fungal strains of S. brevicaulis and Beauveria felina exhibited the highest protein yields and a wide range of polysaccharide-degrading activity when the cultures were cultivated at 22–25°C. The cellulolytic thermophilic strain M. thermophilus 55 isolated from dung demonstrated unusual specificity, most intensive increase of mycelial biomass, and high activity towards algal polysaccharides after seven days of cultivation. The specific activity of laminarinase was one order of magnitude higher than in the marine strains and amounted to 1180 U/mg, and the alginate lyase, carrageenase, polymannuronate lyase, agarase, and fucoidanase activity levels (from 208 to 500 U/mg) were also higher than in all marine strains. All active polysaccharide-degrading strains of thermophilic terrestrial and marine fungi identified in the present study are of considerable interest, as the potential of these fungi for polysaccharide degradation can be applied in the transformation of various agricultural and maricultural waste of plant origin and in the modification of carbohydrate-containing substances in structural research and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanarayanan, T.S., Venkatachalam, A., Thirunavukkarasu, N., Ravishankar, J.P., Doble, M., and Geetha, V., Bot. Mar., 2010, vol. 53, pp. 457–468.

    Article  Google Scholar 

  2. Kumar, A., Henrissat, B., Arvas, M., Syed, M.F., Thieme, N., Benz, J.P., Sorensen, J.L., Record, E., Pöggeler, S., and Kempken, F., PLoS One, 2015, vol. 10. e0140398.

  3. Le Calvez, T., Burgaud, G., Mahe, S., Barbier, G., and Vandenkoornhuyse, P., Appl. Environ. Microbiol., 2009, vol. 75, pp. 6415–6421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Richards, T.A., Leonard, G., Mahe, F., del Campo, J., Romac, S., Jones, M.D.M., Maguire, F., Dunthorn, M., De Vargas, C., and Massana, R., Proc. Biol. Sci., 2015, vol. 282, pp. 2015–2243.

    Google Scholar 

  5. Sobolevskaya, M.P., Leshchenko, E.V., Hoai, T.P.T., Denisenko, V.A., Dyshlovoy, S.A., Kirichuk, N.N., Khudyakova, Y.V., Kim, N.Yu., Berdyshev, D.V., and Pislyagin, E.A., J. Nat. Prod., 2016, vol. 79, pp. 3031–3038.

    Article  PubMed  CAS  Google Scholar 

  6. Oleinikova, G.K., Denisenko, V.A., Berdyshev, D.V., Pushilin, M.A., Kirichuk, N.N., Menzorova, N.I., Kuzmich, A.S., Yurchenko, E.A., Zhuravleva, O.I., and Afiyatullov, Sh., Phytochem. Lett., 2016, vol. 17, pp. 135–139.

    Article  CAS  Google Scholar 

  7. Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B., Biotechnol. Biofuels, 2013, vol. 6, p. 41. doi.org/doi 10.1186/1754-6834–6–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hooley, P. and Whitehead, M., Mycologist, 2006, vol. 20, pp. 144–151.

    Article  Google Scholar 

  9. Brink, J. and de Vries, R.P., Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 1477–1492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Aro, N., Pakula, T., and Penttila, M., FEMS Microbiol. Rev., 2005, vol. 29, pp. 719–739.

    Article  PubMed  CAS  Google Scholar 

  11. Synytsya, A., Čopíková, J., Kim, W.J., and Park, Y.I.I., in Springer Handbook in Marine Biotechnology, Kim, S.-K., Ed., Mumbai: Springer-Verlag, 2015, pp. 543–590.

    Google Scholar 

  12. Deniaud-Boue, E., Kervarec, N., Michel, G., Tonon, T., Kloareg, B., and Herve, C., Ann. Bot., 2014, vol. 14, pp. 1203–1216.

    Article  CAS  Google Scholar 

  13. Behera, S., Singh, R., Arora, R., Sharma, N.K., Shukla, M., and Kumar, S., Front. Bioeng. Biotechnol., 2015, vol. 2, p. 90. doi 10.3389/fbioe.2014.00090

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ulaganathan, T., Boniecki, M.T., Foran, E., Buravenkov, V., Mizrachi, N., Banin, E., Helbert, W., and Cygler, M., ACS Chem. Biol., 2017, vol. 12, pp. 1269–1280.

    Article  PubMed  CAS  Google Scholar 

  15. Kusaykin, M.I., Silchenko, A.S., Zakharenko, A.M., and Zvyagintseva, T.N., Glycobiology, 2016, vol. 26, pp. 1–3.

    Article  Google Scholar 

  16. Pluvinage, B., Hehemann, J.-H., and Boraston, A.B., J. Biol. Chem., 2013, vol. 288, pp. 28078–28088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gao, B., Jin, M., Li, L., Qu, W., and Zeng, R., Front. Microbiol., 2017, vol. 8, p. 600. doi 10.3389/fmicb.2017.00600

    PubMed  PubMed Central  Google Scholar 

  18. Zhu, Y., Chen, P., Bao, Y., Men, Y., Zeng, Y., Yang, J., Sun, J., and Suna, Y., Sci. Rep., 2016, vol. 6, p. 38248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, Y., Barth, D., Tamminen, A., and Wiebe, M.G., BMC Biotechnol., 2016, vol. 16, p. 3. doi.org/0.1186/s12896–016–0233–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Trivedi, N., Reddy, C., Radulovich, R., and Jha, B., Algal Res., 2015, vol. 9, pp. 48–54.

    Article  Google Scholar 

  21. Sathya, R. and Ushadevy, T., Indian J. Appl. Res., 2013, vol. 3, pp. 308–309.

    Article  Google Scholar 

  22. Dhale, M.A. and Vijay-Raj, A.S., Int. J. Food Sci. Technol., 2009, vol. 44, pp. 2424–2430.

    Article  CAS  Google Scholar 

  23. Karnaouri, A., Topakas, E., Antonopoulou, I., and Christakopoulos, P., Front. Microbiol., 2014, vol. 5, p. 281. doi 10.3389/fmicb.2014.00281

    Article  PubMed  PubMed Central  Google Scholar 

  24. Douglas, C.M., Med. Mycol., 2001, vol. 39, pp. 55–66.

    Article  PubMed  CAS  Google Scholar 

  25. Burtseva, Yu.V., Sova, V.V., Pivkin, M.V., Anastyuk, S.D., Gorbach, V.I., and Zvyagintseva, T.N., Appl. Biochem. Microbiol., 2010, vol. 46, pp. 648–656.

    Article  CAS  Google Scholar 

  26. Bakunina, I., Nedashkovskaya, O., Balabanova, L., Zvyagintseva, T., Rasskasov, V., and Mikhailov, V., Mar. Drugs, 2013, vol. 11, pp. 1977–1998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bilai, V.I., Metody eksperimental’noi mikologii (Methods of Experimental Mycology), Kiev: Naukova dumka, 1982.

    Google Scholar 

  28. Bilai, T.I. and Zakharchenko, V.A., Opredelitel’ termofil’nykh gribov (Identification Guide to Thermophilic Fungi), Kiev: Naukova dumka, 1987.

    Google Scholar 

  29. Egorova, L.N., Pochvennye griby Dal’nego Vostoka: Gifomitsety (Soil Fungi of the Far East: Hyphomycetes), Leningrad: Nauka, 1986.

    Google Scholar 

  30. Litvinov, M.A., Opredelitel’ mikroskopicheskikh pochvennykh gribov (Identification Guide to Microscopic Soil Fungi), Leningrad: Nauka, 1967.

    Google Scholar 

  31. Bredford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  Google Scholar 

  32. Nelson, T.E., J. Biol. Chem., 1944, vol. 153, pp. 375–381.

    CAS  Google Scholar 

  33. Urvantseva, A.M., Bakunina, I.Yu., Kim, N.Yu., Isakov, V.V., Glazunov, V.P., and Zvyagintseva, T.N., Khim. Rastit. Syr’ya, 2004, vol. 3, pp. 15–24.

    Google Scholar 

  34. Kusaykin, M.I., Bakunina, I.Y., Sova, V.V., Ermakova, S.P., Kuznetsova, T.S., Besednova, N.N., Zaporozhets, T.S., and Zvyagintseva, T.N., J. Biotechnol., 2008, vol. 3, pp. 904–915.

    Article  CAS  Google Scholar 

  35. Zvyagintseva, T.N., Shevchenko, N.M., and Nazarenko, E.L., J. Exp. Mar. Biol. Ecol., 2005, vol. 320, pp. 123–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Balabanova.

Additional information

Original Russian Text © L.A. Balabanova, I.Yu. Bakunina, L.V. Slepchenko, N.N. Kirichuk, Yu.V. Khudyakova, O.M. Son, M.V. Pivkin, V.A. Rasskazov, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 4, pp. 425–432.

The article is based on materials presented as a communication at the Second Elyakov Scientific Conference in Vladivostok on October 6, 2017.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanova, L.A., Bakunina, I.Y., Slepchenko, L.V. et al. Polysaccharide-Degrading Activity in Marine and Terrestrial Strains of Mycelial Fungi. Russ J Bioorg Chem 44, 431–437 (2018). https://doi.org/10.1134/S1068162018040039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018040039

Keywords

Navigation