Skip to main content
Log in

Study of the primary specificity of proteases by statistical analysis of MALDI mass spectra of proteolysis products

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The experimental verification of the method of study of the primary specificity of the proteolytic enzymes by statistical analysis of the masses of proteolysis products of protein substrates using proteases with the known substrate specificity (glutamyl endopeptidase and trypsin) has been performed. The proposed method does not require direct determination of the amino acid sequence of the proteolysis products, reliably determines proteases with the narrow substrate specificity, and is relatively tolerant offor the presence of peaks of foreign impurities in MALDI mass spectra of the proteolysis products. It has been shown that for exclusion of the false positive results it is necessary to use a set of protein substrates with the subsequent averaging of the obtained statistical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MALDI:

matrix-assisted laser desorption/ionization

HCCA:

4-hydroxy-α-cyanocinnamic acid

DHB:

2,5-dihydroxybenzoic acid

References

  1. Drachevskaya, M.I., Borzenkova, A.V., and Eremeev, N.L., Russ. J. Bioorg. Chem., 2012, vol. 38, no. 1, pp. 93–99.

    Article  CAS  Google Scholar 

  2. Schechter, J. and Berger, A., Biochem. Biophis. Res. Communs., 1967, vol. 27, pp. 157–162.

    Article  CAS  Google Scholar 

  3. Roepstorff, P., Proteomics in Functional Genomics: Protein Structure Analysis, Jollès, P. and Jörnvall, H., Eds., Basel: Birkhauser Verlag AC, 2000, pp. 81–97.

  4. Klesov, A.A., Fermentativnyi kataliz (Enzymatic Catalysis), Moscow: Izd-vo Mosk. Univ., 1984, vol. 2.

    Google Scholar 

  5. Collins, P.J., McMahon, G., O’Brien, P., and O’Connor, B., Int. J. Biochem. Cell Biol., 2004, vol. 36, pp. 2320–2333.

    Article  CAS  PubMed  Google Scholar 

  6. Guionie, O., Moallic, C., Niamké, S., Placier, G., Sine, J.-P., and Colas, B., Comp. Biochem. Physiol., 2003, vol. 135, pp. 503–510.

    Article  Google Scholar 

  7. Zinchenko, A.A., Rumsh, L.D., and Antonov, V.K., Bioorg. Khim., 1976, vol. 2, pp. 803–810.

    CAS  Google Scholar 

  8. Baskova, I.R. and Zavalova, L.L., Biokhimiya, 2007, vol. 72, no. 2, pp. 270–278.

    Google Scholar 

  9. Celia, P. and Milstein, D.E.V., Deverson, Biochem. J., 1971, vol. 123, pp. 945–958.

    Google Scholar 

  10. Nolan, C., Margoliash, E., Peterson, J.D., and Steiner, D.F., J. Biol. Chem., 1971, vol. 246, pp. 2780–2791.

    CAS  PubMed  Google Scholar 

  11. Shilling, O. and Overall, C.M., Nature Biotechnol., 2008, vol. 26, pp. 585–594.

    Article  Google Scholar 

  12. auf dem Keller, U. and Schilling, o, Biochimie, 2010, vol. 92, pp. 1705–1714.

    Article  CAS  PubMed  Google Scholar 

  13. auf dem Keller, U., Schilling, O., and Overall, c. M., Methods Mol. Biol., 2011, vol. 753, pp. 257–272.

    Article  PubMed  Google Scholar 

  14. Gay, S., Binz, P.A., Hochstrasser, D.F., and Appel, R.D., Electrophoresis, 1999, vol. 20, no. 18, pp. 3527–3534.

    Article  CAS  PubMed  Google Scholar 

  15. Tabb, D.L., MacCoss, M.J., Wu, C.C., Anderson, S.D., and Yates, J.R., Anal. Chem., 2003, vol. 75, no. 10, pp. 2470–2477.

    Article  CAS  PubMed  Google Scholar 

  16. Wolski, W.E., Farrow, M., Emde, A., Lehrach, H., Lalowski, M., and Reinert, K., Proteome Sci, 2006, vol. 4, p. 18.

    Article  Google Scholar 

  17. Keiler, K.C., Silber, K.R., Sauer, R.T., Downard, K.M., Papayannopoulos, I.A., and Biemann, K., Protein Sci., 1995, vol. 4, no. 8, pp. 1507–1515.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  19. www.sigmaaldrich.com/sigma-aldrich/bulletin/t6567bul.pdf

  20. Yergey, J., Heller, D., Hansen, G.R., Cotter, J., and Fenselau, C., Anal. Chem., 1983, vol. 55, pp. 353–356.

    Article  CAS  Google Scholar 

  21. Ding, Q., Xiao, L., Xiong, S., Jia, Y., Que, H., Guo, Y., and Liu, S., Proteomics, 2003, vol. 3, pp. 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  22. http://au.expasy.org/tools/findpept.html

  23. www.uniprot.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Eremeev.

Additional information

Original Russian Text © N.L. Eremeev, A.V. Borzenkova, 2015, published in Bioorganicheskaya Khimiya, 2015, Vol. 41, No. 1, pp. 31–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeev, N.L., Borzenkova, A.V. Study of the primary specificity of proteases by statistical analysis of MALDI mass spectra of proteolysis products. Russ J Bioorg Chem 41, 26–30 (2015). https://doi.org/10.1134/S1068162015010045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162015010045

Keywords

Navigation