Skip to main content
Log in

The Thicket Structure Explains Sorbaria sorbifolia’s Ability to Be a Transformer in the Secondary Range

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The patterns of formation of thickets of the invasive vegetatively mobile shrub Sorbaria sorbifolia were studied. The study was carried out in urbanized southern taiga pine forests—forest parks of Yekaterinburg. The density, length and diameter of shoots, and their volume were determined in the center and on the periphery of three thickets of S. sorbifolia on 60 plots of 0.25 m2. The age of 64 shoots was determined by annual tree rings. In the ontogeny of an individual shoot up to 5–7 years, growth is slow, the maximum growth rate is reached at 7–15 years; after 15 years, the morphological parameters of shoots cease to increase noticeably. The average length and diameter of the shoot are 2 times greater from the periphery to the center of thickets, and the volume of one shoot is 8–9 times greater. The total volume of shoots per unit area is 6–6.5 times higher in the center of thickets than in the periphery. Young (1–5 years old) shoots absolutely predominate in the marginal zones. In the center of the thickets, there is a significant proportion of cohorts whose age is more than 10 years, but shoots aged 1–5 years make up more than half of all shoots. It was concluded that the ability of S. sorbifolia to manifest the properties of a transforming plant in the secondary range can be satisfactorily explained by the special structure of its thickets, which have no analog in the forest communities of the Middle Urals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Dickson, T.L., Hopwood, J.L., and Wilsey, B.J., Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species, Biol. Invasions, 2012, vol. 14, pp. 2617–2624. https://doi.org/10.1007/s10530-012-0257-2

    Article  Google Scholar 

  2. Vilà, M., Rohr, R.P., Espinar, J.L., et al., Explaining the variation in impacts of non-native plants on local-scale species richness: the role of phylogenetic relatedness, Global Ecol. Biogeogr., 2015, vol. 24, no. 2, pp. 139–146. https://doi.org/10.1111/geb.12249

    Article  Google Scholar 

  3. Porté, A.J., Lamarque, L.J., Lortie, C.J., et al., Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity, BMC Ecol., 2011, vol. 11, p. 28. https://doi.org/10.1186/1472-6785-11-28

    Article  Google Scholar 

  4. Veselkin, D.V., Dubrovin, D.I., and Pustovalova, L.A., High canopy cover of invasive Acer negundo L. affects ground vegetation taxonomic richness, Sci. Rep., 2021, vol. 11, p. 20758. https://doi.org/10.1038/s41598-021-00258-x

    Article  CAS  Google Scholar 

  5. Ehrenfeld, J.G., Structure and dynamics of populations of japanese barberry (Berberis thunbergii DC.) in deciduous forests of New Jersey, Biol. Invasions, 1999, vol. 1, pp. 203–213. https://doi.org/10.1023/A:1010066810897

    Article  Google Scholar 

  6. Charles-Dominique, T., Edelin, C., and Bouchard, A., Architectural strategies of Cornus sericea, a native but invasive shrub of Southern Quebec, Canada, under an open or a closed canopy, Ann. Bot., 2010, vol. 105, no. 2, pp. 205–220. https://doi.org/10.1093/aob/mcp273

    Article  CAS  Google Scholar 

  7. Brantley, S.T. and Young, D.R., Linking light attenuation, sunflecks, and canopy architecture in mesic shrub thickets, Plant Ecol., 2010, vol. 206, no. 2, pp. 225–236. http://www.jstor.org/stable/40540355

    Article  Google Scholar 

  8. Dalke, I.V., Chadin, I.F., Zakhozhiy, I.G., et al., Traits of Heracleum sosnowskyi plants in monostand on invaded area, PloS One, 2015, vol. 10, no. 11, pp. 1–17. https://doi.org/10.1371/journal.pone.0142833

    Article  CAS  Google Scholar 

  9. Deering, R.H. and Vankat, J.L., Forest colonization and developmental growth of the invasive shrub Lonicera maackii, Am. Midl. Nat., 1999, vol. 141, no. 1, pp. 43–50. https://doi.org/10.1674/0003-0031(1999)141[0043:FCADGO]2.0.CO;2

    Article  Google Scholar 

  10. Panasenko, N.N. and Anishchenko, L.N., Influence of invasive plants Parthenocissus vitacea and Vinca minor on biodiversity indices of forest communities, Contemp. Probl. Ecol., 2018, vol. 11, no. 6, pp. 614–623. https://doi.org/10.1134/S1995425518060070

    Article  Google Scholar 

  11. Aksenov, E.S. and Aksenova, N.A., Decorative plants. Vol. 1. (Trees and shrubs), Entsiklopediya prirody Rossii (Encyclopedia of Nature of Russia), Moscow: ABF, 2000.

    Google Scholar 

  12. Panasenko, N.N., Plants-transformers: sings and features of allocation, Vestn. Udmurt. Univ., 2013, vol. 6, no. 2, pp. 17–22.

    Google Scholar 

  13. Vinogradova, Yu.K., Mayorov, S.R., and Khorun, L.V., Chernaya kniga flory Srednei Rossii: chuzherodnye vidy rastenii v ekosistemakh Sredney Rossii (Black Data Book of the Flora of Central Russia: Alien Plant Species in Ecosystems of Central Russia), Moscow: GEOS, 2010.

    Google Scholar 

  14. Tretyakova, A.S., Patterns of formation and ecological structure of the flora of urbanized territories of the Middle Urals (Sverdlovsk Region), Doctoral (Biol.) Dissertation, Yekaterinburg, 2016.

  15. Veselkin, D.V., Zolotareva, N.V., Lipikhina, Y.A., et al., Diversity of plants in thickets of invasive Sorbaria sorbifolia: differences in the effect on aboveground vegetation and seed bank, Russ. J. Ecol., 2020, vol. 51, pp. 518–527. https://doi.org/10.1134/S1067413620060090

    Article  CAS  Google Scholar 

  16. Veselkin, D.V., Dubrovin, D.I., Rafikova, O.S., et al., Shading and light interception in thickets of invasive Acer negundo and Sorbaria sorbifolia, Russ. J. Biol. Invasions, 2022, vol. 13, no. 1, pp. 22–31. https://doi.org/10.1134/S2075111722010155

    Article  Google Scholar 

  17. Kulikov, P.V., Zolotareva, N.V., and Podgayevskaya, E.N., Endemichnyye rasteniya Urala vo flore Sverdlovskoy oblasti (Endemic Plants of the Urals in the Flora of Sverdlovsk Region), Yekaterinburg: Goshchitskii, 2013.

    Google Scholar 

  18. Zolotareva, N.V., Podgaevskaya, E.N., and Shavnin, S.A., Structural changes in the soil surface cover of pine forests under the conditions of a large industrial city, Izv. Orenb. Agrar. Univ., 2012, vol. 37, no. 5, pp. 218–221.

    Google Scholar 

  19. Veselkin, D.V., Korzhinevskaya, A.A., and Podgayevskaya, E.N., The species composition and abundance of alien and invasive understory shrubs and trees in urban forests of Yekaterinburg, Vestn. Tomsk. Gos. Univ., Biol., 2018, vol. 42, pp. 102–118. https://doi.org/10.17223/19988591/42/5

    Article  Google Scholar 

  20. Veselkin, D.V. and Korzhinevskaya, A.A., Spatial factors of the alien understory shrubs and trees distribution in urban forests of large city, Izv. Akad. Nauk, Ser. Geogr., 2018, no. 4, pp. 54–64. https://doi.org/10.1134/S2587556618040167

  21. Serebryakov, I.G., Growth forms of higher plants and their study, in Polevaya geobotanika (Field Geobotany), Moscow: Nauka, 1964, pp. 146–205.

    Google Scholar 

  22. Mazurenko, M.T. and Khokhryakov, A.P., Struktura i morfogenez kustarnikov (Structure and Morphogenesis of Shrubs), Moscow: Nauka, 1977.

    Google Scholar 

  23. Flora SSSR (Flora of the USSR), Moscow–Leningrad: Izd. Akad. Nauk SSSR, 1939, vol. 9.

  24. Flora Sibiri. Rosaceae. (Flora of Siberia. Rosaceae.), Novosibirsk: Nauka, 1988.

    Google Scholar 

  25. Jurševska, G., Invasive tree taxa in major dendrological plantations in Jelgava district, Acta Biol. Univ. Daugavpiliensis, 2007, vol. 7, no. 2, pp. 149–158.

    Google Scholar 

  26. Dobravolskaitė, R. and Gudžinskas, Z., Alien plant invasion to forests in the vicinity of communal gardens, Bot. Lith., 2011, vol. 17, nos. 2–3, pp. 73–84.

    Google Scholar 

  27. Lukatkin, A.S., and Khapugin, A.A., Invasive plant species in the flora of Saransk, Sbornik materialov XX Mezhdunarodnogo nauchno-prakticheskogo foruma “Problemy ozeleneniya krupnykh gorodov” (Proc. XX Int. Sci. Pract. Forum “Problems of Landscaping of Large Cities”), Moscow: Pero, 2018, pp. 67–70.

  28. Shipchinsky, N.V., Sorbaria A. Br., Derevia i kustarniki SSSR (Trees and Shrubs of SSSR), Moscow: Akad. Nauk SSSR, 1954, vol. 3, pp. 334–340.

    Google Scholar 

  29. Fedoseeva, G.P., Blagodatkova, T.S., and Okoneshnikova, T.F., Optimization of greening in the city of Yekaterinburg, Izv. Irkuts. Gos. Univ., Ser. Biol. Ekol., 2011, vol. 4, no. 2, pp. 94–108.

    Google Scholar 

  30. Shiyatov, S.G., Vaganov, E.A., Kirdyanov, A.V., et al., Metody dendrokhronologii. Chast I. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-koltsevoy informatsii: Uchebno-metodicheskoye posobie (Methods of Dendrochronology. Part I. Fundamentals of Dendrochronology. Collecting and Obtaining Tree-Ring Information: Educational and Methodical Manual), Krasnoyarsk: Krasnoyarsk. Gos. Univ., 2000.

    Google Scholar 

  31. Ye, X.H., Yu, F.H., and Dong, M., A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies, Ann. Bot., 2006, vol. 98, no. 1, pp. 187–191. https://doi.org/10.1093/aob/mcl086

    Article  Google Scholar 

  32. Smirnova, O.V., Palenova, M.M., and Komarov, A.S., Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations, Ontogenez, 2002, vol. 33, no. 1, pp. 5–15.

    CAS  Google Scholar 

  33. Firsov, G.A. and Tkachenko, K.G., The quality of seeds of Sorbaria sorbifolia and Sorbaria kirilowii (Rosaceae) at the North-Western Russia, Byull. Bot. Sada, 2016, no. 16, pp. 22–28.

  34. Sitte, P., Weiler, E.W., Kadereit, J.W., et al., Lehrbuch der Botanik, Spektrum Akademischer Verlag, 2002.

    Google Scholar 

  35. Panetta, F.D. and Gooden, B., Managing for biodiversity: impact and action thresholds for invasive plants in natural ecosystems, NeoBiota, 2017, vol. 34, no. 2, pp. 53–66. https://doi.org/10.3897/neobiota.34.11821

    Article  Google Scholar 

  36. Rusterholz, H., Schneuwly, J., and Baur, B., Invasion of the alien shrub Prunus laurocerasus in suburban deciduous forests: effects on native vegetation and soil properties, Acta Oecol., 2018, vol. 92, pp. 44–51. https://doi.org/10.1016/j.actao.2018.08.004

    Article  Google Scholar 

  37. Koropachinsky, I.Yu. and Vstovskaya, T.N., Drevesnyye rasteniya Aziatskoy Rossii (Woody Plants of Asiatic Russia), Novosibirsk: Geo, 2002.

    Google Scholar 

  38. Davletshina, G.T. and Ulanova, N.G., Red raspberry, Biologicheskaya flora Moskovskoy oblasti (Biological Flora of the Moscow Region), Moscow: Mosk. Gos. Univ., 1996, vol. 12, pp. 89–112.

    Google Scholar 

  39. Marshall, B., Harrison, R.E., Graham, J., et al., Spatial trends of phenotypic diversity between colonies of wild raspberry Rubus idaeus, New Phytol., 2001, vol. 151, no. 3, pp. 671–682. https://doi.org/10.1046/j.0028-646x.2001.00220.x

    Article  CAS  Google Scholar 

  40. Bystrushkin, A.G., The ontogeny and age variability of raspberry Rubus idaeus L.s.str. (Rosaceae), Vestn. Kurgan. Gos. Univ., Estesv. Nauki, 2017, vol. 47, no. 4, pp. 18–22.

    Google Scholar 

  41. Whitney, G.G., A demographic analysis of Rubus idaeus and Rubus pubescens, Can. J. Bot., 1986, vol. 64, no. 12, pp. 2916–2921. https://doi.org/10.1139/b86-385

    Article  Google Scholar 

  42. Pyšek, P., Richardson, D.M., Rejmánek, M., et al., Alien plants in checklists and floras: towards better communication between taxonomists and ecologists, Taxon, 2004, vol. 53, no. 1, pp. 131–143. https://doi.org/10.2307/4135498

    Article  Google Scholar 

  43. Reinhart, K.O. and Callaway, R.M., Soil biota and invasive plants, New Phytol., 2006, vol. 170, pp. 445–457. https://doi.org/10.1111/j.1469-8137.2006.01715.x

    Article  Google Scholar 

  44. Dorning, M. and Cipollini, D., Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects, Plant Ecol., 2006, vol. 184, no. 2, pp. 287–296.

    Article  Google Scholar 

  45. El-Keblawy, A. and Al-Rawai, A., Impacts of the invasive exotic Prosopis juliflora (Sw.) DC on the native flora and soils of the UAE, Plant Ecol., 2007, vol. 190, no. 1, pp. 23–35.

    Article  Google Scholar 

  46. Keane, R. and Crawley, M.J., Exotic plant invasions and the enemy release hypothesis, Trends. Ecol. Evol., 2002, vol. 17, no. 4, pp. 164–170. https://doi.org/10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  47. Liebhold, A.M., Brockerhoff, E.G., Kalisz, S., et al., Biological invasions in forest ecosystems, Biol. Invasions, 2017, vol. 19, no. 11, pp. 3437–3458. https://doi.org/10.1007/s10530-017-1458-5

    Article  Google Scholar 

  48. Shields, J.M., Jenkins, M.A., Saunders, M.R., et al., Age distribution and spatial patterning of an invasive shrub in secondary hardwood forests, For. Sci., 2014, vol. 6, no. 5, pp. 830–840. https://doi.org/10.5849/forsci.13-079

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to: Doctor of Biological Sciences L.I. Agafonov (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) for consultations on the methodology for determining the age of shoots; O.S. Rafikova (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) for comments on the manuscript.

Funding

The study was carried out within the Russian Science Foundation project no. 22-24-20149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lipikhina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they do not have a conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipikhina, Y.A., Zolotareva, N.V., Podgaevskaya, E.N. et al. The Thicket Structure Explains Sorbaria sorbifolia’s Ability to Be a Transformer in the Secondary Range. Russ J Ecol 53, 456–463 (2022). https://doi.org/10.1134/S106741362206008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741362206008X

Keywords:

Navigation