Skip to main content
Log in

Insular Pine Forests of the Southern Urals and Ribbon Pine Forests of the Altai as Objects of Dendroclimatic Research

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

It has recently become a matter of discussion whether it is correct to use regional tree-ring chronologies in spatiotemporal climate reconstructions, since natural and climatic conditions in the regions may be heterogeneous, varying on different scales (from micro to global). We have studied the response of tree-ring width to climate in Scots pine (Pinus sylvestris L.) growing in the steppe zone, in insular pine forest of the Southern Urals and ribbon pine forests of Altai. Regional features and differences between the corresponding tree-ring chronologies obtained in the season of tree-ring formation (May–July) and spatiotemporal asynchrony in the long-term dynamics of tree-ring width in the study regions have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Pisaric, M.F.J., Carey, S.K., Kokelj, S.V., and Youngblut, D., Anomalous 20th century tree growth, Mackenzie Delta, Northwest Territories, Canada, Geophys. Rev. Lett., 2007, vol. 34, art. L05714. https://doi.org/10.1029/2006GL029139

    Article  Google Scholar 

  2. Hellmann, L., Agafonov, L., Ljungqvist, F.C., et al., Diverse growth trends and climate responses across Eurasia’s boreal forest, Environ. Res. Lett., 2016, vol. 11, no. 7, art. 074021. https://iopscience.iop.org/article/ 10.1088/1748-9326/11/7/074021/meta.

    Article  Google Scholar 

  3. Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E., et al., Global assessment of relationships between climate and tree growth, Glob. Change Biol., 2020, vol. 26, pp. 3212–3220. https://doi.org/10.1111/gcb.15057

    Article  Google Scholar 

  4. Leonelli, G., Pelfini, M., Battipaglia, G., and Cherubini, P., Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network, Clim. Change, 2009, vol. 96, pp. 185–201. https:// link.springer.com/article/10.1007/s10584-009-9574-6.

    Article  Google Scholar 

  5. Adams, H.R., Barnard, H.R., and Loomis, A.K., Topography alters tree growth-climate relationships in a semi-arid forested catchment, Ecosphere, 2014, vol. 5, no. 11, pp. 1–16. https://doi.org/10.1890/ES14-00296.1

    Article  Google Scholar 

  6. Duthorn, E., Schneider, L., Konter, O., et al., On the hidden significance of differing micro-sites on tree-ring based climate reconstructions, Silva Fenn., 2015, vol. 49, no. 1, art. 1220. https://doi.org/10.14214/sf.1220

    Article  Google Scholar 

  7. Lange, J., Buras, A., Cruz-Garcia, R., et al., Climate regimes override micro-site effects on the summer temperature signal of Scots pine at its northern distribution limits, Front. Plant Sci., 2018, vol. 9, art. 1597. https://doi.org/10.3389/fpls.2018.01597

    Article  PubMed  PubMed Central  Google Scholar 

  8. Montpellier, E.E., Soule, P.T., Knapp, P.A., and Shelly, J.S., Divergent growth rates of alpine larch trees (Larix lyallii Parl.) in response to microenvironmental variability, Arct. Antarct. Alpine Res., 2018, vol. 50, no. 1, art. e1415626. https://doi.org/10.1080/15230430.2017.1415626

    Article  Google Scholar 

  9. Wilson, R., D’Arrigo, R., Buckley, B., et al., A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data, J. Geophys. Res., 2007, vol. 112, art. D17103. https://doi.org/10.1029/2006JD008318

    Article  Google Scholar 

  10. Allen, K.J., Cook, E.R., Buckley, B.M., et al., Continuing upward trend in Mt. Read Huon pine ring widths temperature or divergence?, Quat. Sci. Rev., 2014, vol. 102, pp. 39–53. https://doi.org/10.1016/j.quascirev.2014.08.003

    Article  Google Scholar 

  11. George, S. and Esper, J., Concord and discord among Northern Hemisphere paleotemperature reconstructions from tree rings, Quat. Sci. Rev., 2019, vol. 203, no. 1, pp. 278–281. https://doi.org/10.1016/j.quascirev.2018.11.013

    Article  Google Scholar 

  12. Ljungqvist, F.C., Piermattei, A., Seim, A., et al., Ranking of tree-ring based hydroclimate reconstructions of the past millennium, Quat. Sci. Rev., 2020, vol. 230, art. 106074. https://doi.org/10.1016/j.quascirev.2019.106074

    Article  Google Scholar 

  13. George, S. and Meko, D.M., The limits of freely-available tree-ring chronologies, Quat. Sci. Rev., 2020, vol. 234, art. 106264. https://doi.org/10.1016/j.quascirev.2020.106264

    Article  Google Scholar 

  14. Rygalova, N.V., Comparative analysis of tree-ring chronologies for ribbon and insular pine forests at the southern boundary of Scots pine range in Western Siberia, Geogr. Prirodopol’z. Sibiri, 2017, vo. 24, pp. 118–128. www.elibrary.ru/item.asp?id=32541914.

    Google Scholar 

  15. Kolesnikov, B.P., An essay on the vegetation of Chelyabinsk oblast in the context of its geobotanical zoning, in Flora i lesnaya rastitel’nost' Il’menskogo gosudarstvennogo zapovednika imeni V.I. Lenina (The Flora and Forest Vegetation of the Il’men State Nature Reserve Named after V.I. Lenin), Sverdlovsk: Ural. Nauch. Tsentr Akad. Nauk SSSR, 1961, pp. 105–129.

  16. Altaiskii krai: Atlas (The Altai Krai: An Atlas), vol. 1, Barnaul, 1978.

  17. Shiyatov, S.G., Vaganov, E.A., Kirdyanov, A.V., et al., Metody dendrokhronologii (Methods of Dendroclimatology), Krasnoyarsk: KrasGU, 2000, part 1.

  18. Rinn, F., TSAP Reference Manual, Version 3.0, Heidelberg, 1996.

  19. Holmes, R.L., Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 1983, vol. 43, no. 3, pp. 69–78.

    Google Scholar 

  20. Cook, E.R. and Krusic, P.J., Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics, Palisades, NY:. Lamont–Doherty Earth Observatory, Columbia University, 2005.

    Google Scholar 

  21. Shiyatov S.G. Dendrokhronologiya verkhnei granitsy lesa na Urale (Dendrichronology of the Upper Treeline in the Urals), Moscow: Nauka, 1986.

  22. Harris, I., Osborn, T.J., Jones, P., and Lister, D., Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 2020, no. 7. https://doi.org/10.1038/s41597-020-0453-323

  23. Biondi, F. and Waikul, K., DENDROCLIM2002: AC++ program for statistical calibration of climate signals in tree-ring chronologies, Comput. Geosci., 2004, vol. 30, pp. 303–311.

    Article  Google Scholar 

  24. Methods of Dendrochronology: Applications in the Environmental Sciences, Cook, E.R. and Kairukstis, L.A., Eds., Dordrecht: Kluwer, 1990.

    Google Scholar 

  25. Tabakova, M.A., Arzac, A., Martinez, E., and Kirdyanov, A.V., Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia, Dendrochronologia, 2020, vol. 62, art. 125709. https://doi.org/10.1016/j.dendro.2020.125709

    Article  Google Scholar 

  26. Fonti, P. and Babushkina, E.A., Tracheid anatomical responses to climate in a forest–steppe in southern Siberia, Dendrochronologia, 2016, vol. 39, pp. 32–41. https://doi.org/10.1016/j.dendro.2015.09.002

    Article  Google Scholar 

  27. Khansaritoreh, E., Choimaa, D., Klinge, M., et al., Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe, Glob. Change Biol., 2017, vol. 23, pp. 3675–3689. https://doi.org/10.1111/gcb.13750

    Article  Google Scholar 

  28. Wang, X., Yang, B., and Ljungqvist, F.C., The vulnerability of Qilian juniper to extreme drought events, Front. Plant Sci., 2019, vol. 10. https://doi.org/10.3389/fpls.2019.01191

  29. Strashnaya, A.I., Maksimenkova, T.A., Chub, O.V., Agrometeorological features of the 2010 drought in Russia compared to droughts in previous years, Tr. Gidrometeorol. Naucho-issled. Tsentra RF, 2011, no. 345, pp. 171–188. https://elibrary.ru/item.asp?id=16555543.

  30. Rapoport, M.S., Geological structure and development of the Southern Urals (within Chelyabinsk oblast), Ural. Geol. Zh., 2006, no. 3, pp. 3–20. www.elibrary.ru/ item.asp?id=9510159.

  31. Baryshnikov, G.Ya. and Maloletko, A.M., Pine forest glens in steppes of the Ob region, in Sovremennye problemy geografii i geologii (Current Problems in Geography and Geology), Tomsk: Tomsk. Gos. Univ., 2017, pp. 138–142. https://elibrary.ru/item.asp?id=30582442.

  32. Suvorova, G.G., Yan’kova, L.S., Kopytova, L.D., and Filippova, A.K., Optimal environmental factors and photosynthesis rates of Scots pine and Siberian larch in Cisbaikalia, Sib. Ekol. Zh., 2005, no. 1, pp. 85–95. https://elibrary.ru/item.asp?id=9130798.

  33. Suvorova, G.G., Yan’kova, L.S., Kopytova, L.D., and Filippova, A.K., The maximum photosynthesis rates of Scots pine and Siberian larch in Cisbaikalia, Sib. Ekol. Zh., 2005, no. 1, pp. 97–108. https://elibrary.ru/ item.asp?id=9130799.

  34. Suvorova, G., Ivanova, M., and Korzukhin, M., Influence of environmental factors on photosynthesis of three coniferous species, Annu. Res. Rev. Biol., 2017, vol. 12, no. 3. https://elibrary.ru/item.asp?id=31065675.

  35. Suvorova, G.G., Oskolkov, V.A., Stasova, V.V., and Antonova, G.F., The ratio of growth activity, expenditures for stem respiration, and photosynthetic productivity of the crown in Scots pine, Izv. Irkutsk. Gos. Univ., Ser. Biol. Ekol., 2015, vol. 11, pp 2–12. https://elibrary.ru/item.asp?id=23438304.

    Google Scholar 

  36. Suvorova, G.G., Oskorbina, M.V., Kopytova, L.D., et al., Seasonal changes in photosynthetic activity and chlorophylls in the Scots Pine and Siberian spruce with optimal or insufficient moistening, Contemp. Probl. Ecol., vol. 4, no. 6, pp. 626–633. https://elibrary.ru/ item.asp?id=17110126

  37. Suvorova, G.G., Maksyutova, E.V., Timofeeva, SS., et al., Using hydrothermal coefficients for assessing the effect of extreme conditions on photosynthetic productivity of conifers, Probl. Region. Ekol., 2012, no. 6, pp. 144−149.

  38. Agafonov, L.A and Kukarskikh, V.V., Climate changes in the past century and radial increment of pine in the Southern Ural steppe, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 160–167. https://elibrary.ru/item.asp?id=9976741.

    Article  Google Scholar 

  39. Belokopytova, L.V., Babushkina, E.A., Zhirnova, D.F., et al., Climatic response of conifer radial growth in forest-steppes of south Siberia: Comparison of three approaches, Contemp. Probl. Ecol., 2018, vol. 11, no. 4, pp. 366–376. https://elibrary.ru/item.asp?id=35192093.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to anonymous reviewers whose comments have helped to improve presentation of the data obtained.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-05-00591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gurskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, L.I., Gurskaya, M.A., Kukarskih, V.V. et al. Insular Pine Forests of the Southern Urals and Ribbon Pine Forests of the Altai as Objects of Dendroclimatic Research. Russ J Ecol 52, 349–357 (2021). https://doi.org/10.1134/S1067413621050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621050039

Keywords:

Navigation