Skip to main content
Log in

Physiological and Biochemical Determinants of Halophyte Adaptive Strategies

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

The relationship is studied between the physiological and biochemical characteristics of different ecological halophyte groups and their adaptive strategies (determined by the type of adaptation to soil salinity, type of photosynthesis, and life form). It is found that the key parameters that determine the formation of different adaptation strategies of halophytes are the rate of CO2 gas exchange, content of chlorophylls a + b, and cell membrane permeability. At the same time, different adaptation strategies of halophytes significantly differ in the pattern and range of variation in their physiological and biochemical characteristics, which indicates different manifestations of adaptation mechanisms and deeper ecological differentiation of individual halophyte species and groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rabotnov, T.A., Studies on cenotic populations aimed at elucidating the life strategies of plant species, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1975, vol. 80, no. 2, pp. 5–17.

    Google Scholar 

  2. Mirkin, B.M. and Naumova, L.G., Vvedenie v sovremennuyu nauku o rastitel’nosti (A Primer in the Modern Science of Vegetation), Moscow: Geos, 2017.

  3. Usmanov, I.Yu., Rakhmankulova, Z.F., and Kulagin, A.Yu., Ekologicheskaya fiziologiya rastenii (Ecological Physiology of Plants), Moscow: Logos, 2001.

  4. Dvorakovskii, M.S., Ekologiya rastenii (Plant Ecology), Moscow: Vysshaya Shkola, 1983.

  5. Lokhande, V.H. and Suprasanna, P., Prospects of halophytes in understanding and managing abiotic stress tolerance, in Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change, Ahmad, P. and Prasad, M.N.V., Eds., New York: Springer, 2012, pp. 29–56. https://doi.org/10.1007/978-1-4614-0815-4_2

    Book  Google Scholar 

  6. Genkel’, P.A., Fiziologiya rastenii (Pant Physiology), Moscow: Prosveshchenie, 1975.

  7. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Structural, physiological, and biochemical aspects of salinity tolerance of halophytes, Russ. J. Plant Physiol., 2017, vol. 64, pp. 464–477. https://doi.org/10.1134/S1021443717040112

    Article  CAS  Google Scholar 

  8. Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S., et al., Biochemical conditionality of differentiation of halophytes by the type of regulation of salt metabolism in Prieltonye, Contemp. Probl. Ecol., 2016, vol. 9, pp. 100–108. https://doi.org/10.1134/S1995425516010133

    Article  Google Scholar 

  9. Abdel-Latif, A., Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress, Aust. J. Basic Appl. Sci., 2008, vol. 2, no. 1, pp. 37–41.

    CAS  Google Scholar 

  10. Diaz, S., Plant functional types and ecosystem function in relation to global change, J. Veget. Sci., 1997, no. 8, pp. 463–474. https://doi.org/10.2307/3237198

  11. Cornelissen, J.H.C., Lavorel, S., Garnier, E., et al., A handbook of protocols for standardised and easy measurement of plant functional traits worldwide, Aust. J. Bot., 2003, vol. 51, pp. 335–380. https://doi.org/10.1071/BT02124

    Article  Google Scholar 

  12. Tarchevskii, I.A., Metabolizm rastenii pri stresse (izbrannye trudy) (Plant Metabolism under Stress: Selected Studies). Kazan: Fen, 2001.

  13. Yensen, N.P. and Biel, K.Y., Soil remediation via salt-conduction and the hypothesis of halosynthesis and photoprotection, in Ecophysiology of High Salinity Tolerant Plants, Khan, M.A. and Weber, D.J., Eds., Springer, 2006, pp. 313–344. https://doi.org/10.1007/1-4020-4018-0

    Book  Google Scholar 

  14. Shabala, S. and Mackay, A., Ion transport in halophytes, Adv. Bot. Res., 2011, vol. 57, pp. 151–199. https://doi.org/10.1016/B978-0-12-387692-8.00005-9

    Article  CAS  Google Scholar 

  15. Flowers, T.J., Glenn, E.P., and Volkov, V., Could vesicular transport of Na+ and Cl be a feature of salt tolerance in halophytes?, Ann. Bot., 2019, vol. 123, pp. 1–18. https://doi.org/10.1093/aob/mcy164

    Article  CAS  PubMed  Google Scholar 

  16. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia, Phytochemistry, 2014, vol. 105, pp. 37–42. https://doi.org/10.1016/j.phytochem.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  17. Rozentsvet, O., Nesterov, V., Bogdanova, E., et al., Structural and molecular strategy of photosynthetic apparatus organization of wild flora halophytes, Plant Physiol. Biochem., 2018, vol. 219, pp. 213–220. https://doi.org/10.1016/j.plaphy.2018.06.006

    Article  CAS  Google Scholar 

  18. Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S., et al., Effect of saline soils on the functional state of species of the genus Artemisia, Biol. Bull., 2019, vol. 46, pp. 294–301. https://doi.org/10.1134/S1062359019030099

    Article  Google Scholar 

  19. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (A Manual of Soil Chemical Analysis), Moscow: Mosk. Gos. Univ., 1970.

  20. Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosyntethetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 331–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  Google Scholar 

  21. Kholodova, V.P., Volkov, K.S., and Kuznetsov, Vl.V., Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation, Russ. J. Plant Physiol., 2005, vol. 52, pp. 748–757. https://doi.org/10.1007/s11183-005-0111-9

    Article  CAS  Google Scholar 

  22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Article  CAS  Google Scholar 

  23. Sukhorukov, A.P., Karpologiya semeistva Chenopodiaceae v svyazi s problemami filogenii, sistematiki i diagnostiki ego predstavitelei (The Carpology of the Family Chenopodiaceae in Relation to Problems of Phylogeny, Systematics and Diagnostics of its Representatives), Tula: Grif i K, 2014.

  24. Serebryakov, I.G., Ekologicheskaya morfologiya rastenii (Ecological Morphology of Plants), Moscow: Vysshaya Shkola, 1962.

  25. Bromham, L. and Bennet, T.H., Salt tolerance evolves more frequently in C4 grass lineages, J. Evol. Biol., 2014, vol. 27, pp. 653–659. https://doi.org/10.1111/jeb.12320

    Article  CAS  PubMed  Google Scholar 

  26. Yadav, S., Mishra, A., and Jha, B., Elevated CO2 leads to carbon sequestration by modulating C4 photosynthesis pathway enzyme (PPDK) in Suaeda monoica and S. fruticosa, J. Photochem. Photobiol. B, 2018, vol. 178, pp. 310–315. https://doi.org/10.1016/j.jphotobiol.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  27. Dymova, O.V. and Golovko, T.K., Photosynthetic pigments in native plants of the taiga zone at the European Northeast Russia, Russ. J. Plant Physiol., 2019, vol. 66, pp. 384–392. https://doi.org/10.1134/S1021443719030038

    Article  CAS  Google Scholar 

  28. Bil’, K.Ya., Ekologiya fotosinteza (The Ecology of Photosynthesis), Moscow: Nauka, 1993.

  29. Stroev, E.A., Biologicheskaya khimiya (Biological Chermistry), Moscow: Vysshaya Shkola, 1986.

  30. Akmurzina, V.A., Selishcheva, A.A., and Shvets, V.I., From lipid analysis to lipidomics, Vestn. MITKhT, 2012, vol. 7, no. 6, pp. 3–21.

    CAS  Google Scholar 

  31. Orlova, N.V., Kusakina, M.G., and Suchkova, N.V., Dependence of water-soluble protein contents in the organs of halophytes on the level of soil salinization, Vestn. Perm. Gos. Univ., 2007, no. 5 (10), pp. 31–34.

  32. Freitag, Y., Golud, V.B., and Yuritsyna, N.A., Halophytic plant communities in the northern Caspian Lowlands: 1. Annual halophytic communities, Phytocenologia, 2001, vol. 31, pp. 63–08.

    Google Scholar 

  33. Voznesenskaya, E.V., Franceschi, V.R., Kiirats, O., et al., Kranz anatomy is not essential for terrestrial C4 plant photosynthesis, Nature, 2001, vol. 414, pp. 543–546. https://doi.org/10.1038/35107073

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nesterov.

Ethics declarations

The authors declare that have no conflict of interest.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Nesterov, V.N., Kosobryukhov, A.A. et al. Physiological and Biochemical Determinants of Halophyte Adaptive Strategies. Russ J Ecol 52, 27–35 (2021). https://doi.org/10.1134/S1067413621010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621010124

Keywords:

Navigation