Skip to main content
Log in

Chemical composition of Juniperus sibirica needles (Cupressaceae) in the forest–tundra ecotone, the Khibiny Mountains

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The needles of juniper growing in spruce and birch forests of the Khibiny Mountains have been analyzed to evaluate the pattern of changes in their chemical composition (ADF, lignin, cellulose, lignin/cellulose, lipids, phenolic compounds, proanthocyanidins, flavonoids, N, C, and also Ca, Mg, K, Mn, Zn, P, S, Al, and Fe). It has been shown that the concentrations of lignin, lipids, phenolic compounds, Ca, Al, and Fe in the needles increase with age, while those of flavonoids, soluble and bound proanthocyanidins, N, P, K, Mg, Zn, and Mn decrease. The needles of juniper from spruce and birch forests differ in the contents of nutrient elements, which is explained by differences in the composition of soils. The contents of lignin, cellulose, and lipids in aging needles are lower in birch forests than in spruce forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R.P., Yields and seasonal variation of phytochemicals from Juniperus species of the United States, Biomass, 1987, vol. 12, no. 2, pp. 129–139.

    Article  CAS  Google Scholar 

  • Aerts, R., The freezer defrosting: Global warming and litter decomposition rates in cold biomes, J. Ecol., 2006, vol. 94, no. 4, pp. 713–724.

    Article  Google Scholar 

  • Buzuk, G.N., Kuz’micheva, N.A., and Rudenko, A.V., Morphometry of medicinal plants: 2. Vaccinium myrtillus L.: Interrelation of morphological characters and chemical composition, Vestn. Farmatsii, 2007, vol. 35, no. 1, pp. 1–12.

    Google Scholar 

  • Close, D.C. and McArthur, C., Rethinking the role of many plant phenolics: Protection from photodamage, not herbivores?, Oikos, 2002, vol. 99, no. 1, pp. 166–172.

    Article  CAS  Google Scholar 

  • DeLuca, T.H. and Zackrisson, O., Enhanced soil fertility under Juniperus communis in arctic ecosystems, Plant Soil, 2007, vol. 294, nos. 1–2, pp. 147–155.

    Article  CAS  Google Scholar 

  • Farjon, A.A., World Checklist and Bibliography of Conifers, Richmond: Royal Botanic Gardens, Kew Publishing, 2001.

    Google Scholar 

  • Frutos, P., Hervas, G., Ramos, G., et al., Condensed tannin content of several shrub species from a mountain area in northern Spain, and its relationship to various indicators of nutritive value, Animal Feed Sci. Technol., 2002, vol. 95, nos. 3–4, pp. 215–226.

    CAS  Google Scholar 

  • Fuksman, I.L., Isidorov, V.A., Zhdanova, M.A., et al., Specific features of some metabolite contents in the needles of Pinus sylvestris and Picea abies (Pinaceae) affected by fungal diseases, Rastit. Resursy, 2005, vol. 41, no. 4, pp. 85–91.

    CAS  Google Scholar 

  • García-Morote, F.A., López-Serrano, F.R., Andrés, M., et al., Effects of woodland maturity, vegetation cover and season on enzymatic and microbial activity in thermophilic Spanish juniper woodlands (Juniperus thurifera L.) of southern Spain, Eur. J. Soil Sci., 2012, vol. 63, no. 5, pp. 579–591.

    Google Scholar 

  • Gerling, N.V. and Zagirova, S.V., Needle structure and photosynthesis in Juniperus sibirica (Cupressaceae) in the Northern Urals, Bot. Zh., 2009, vol. 94, no. 11, pp. 1672–1680.

    Google Scholar 

  • Horner, J.D., Cates, R.G., and Gosz, J.R., Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas- fir foliage, Oecologia, 1987, vol. 72, no. 4, pp. 515–519.

    Google Scholar 

  • Kamalak, A., Filho, J.M.P., Canbolat, O., et al., Chemical composition and its relationship to in vitro dry matter digestibility of several tannin-containing trees and shrub leaves, Livestock Res. Rural Dev., 2004, vol. 16, no. 4, p. 27.

    Google Scholar 

  • Khantemirova, E.V. and Semerikov, V.L., Allozyme polymorphism in common juniper varieties, Lesovedenie, 2009, no. 1, pp. 74–77.

    Google Scholar 

  • Kitayama, K., Suzuki, S., Hori, M., et al., On the relationships between leaf litter lignin and net primary productivity in tropical rain forests, Oecologia, 2004, vol. 140, no. 2, pp. 335–339.

    Article  PubMed  Google Scholar 

  • Lesjak, M.M., Beara, I.N., Orcic, D.Z., et al., Juniperus sibirica Burgsdorf. as a novel source of antioxidant and antiinflammatory agents, Food Chem., 2011, vol. 124, no. 3, pp. 850–856.

    Article  CAS  Google Scholar 

  • Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biogeochemical Cycles in Northern Forests under Conditions of Technogenic Air Pollution), Apatity: Kol’sk. Nauch. Tsentr Ross. Akad. Nauk, 1996.

    Google Scholar 

  • Lukina, N.V., Polyanskaya, L.M., and Orlova, M.A., Pitatel’nyi rezhim pochv severotaezhnykh lesov (Soil Nutrient Regime in Northern Taiga Forests), Moscow: Nauka, 2008.

    Google Scholar 

  • Manakov, K.N. and Nikonov, V.V., Trends in the biological cycles of mineral elements and soil formation in biogeocenoses of three mountain vegetation belts, in Pochvoobrazovanie v biogeotsenozakh Khibinskikh gor (Soil Formation in Biogeocenoses of the Khibiny Mountains), Apatity: Kol’sk. Nauch. Tsentr Akad. Nauk SSSR, 1979, pp. 65–94.

    Google Scholar 

  • Martz, F., Peltola, R., Fontanay, S., et al., Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone, J. Agric. Food Chem., 2009, vol. 57, no. 20, pp. 9575–9584.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, K.L., Klopatek, J.M., and Klopatek, C.C., The effects of litter quality and climate on decomposition along an elevational gradient, Ecol. Appl., 1998, vol. 8, no. 4, pp. 1061–1071.

    Article  Google Scholar 

  • Narchuganov, A.N., Efremov, A.A., and Offan, K.B., Extractive compounds isolated by treatment with alcohol and sonication from needle-bearing twigs of conifers from Evenkia, Khim. Rastit. Syr’ya, 2010, no. 1, pp. 105–108.

    Google Scholar 

  • Oleksyn, J., Modrzýnski J., Tjoelker, M.G., et al., Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation, Funct. Ecol., 1998, vol. 12, no. 4, pp. 573–590.

    Article  Google Scholar 

  • Orlova, M.A., Lukina, N.V., Tutubalina, O.V., et al., Soil nutrient’s spatial variability in forest–tundra ecotones on the Kola Peninsula, Russia, Biogeochemistry, 2013, vol. 113, nos. 1–3, pp. 283–305.

    Article  Google Scholar 

  • Orlova, M.A., An elementary unit of forest biogeocenotic cover for assessing the ecosystem functions of forests, Tr. Karel. Nauch. Tsentra, Ser. Ekol. Issled., 2013, no. 6, pp. 126–132.

    Google Scholar 

  • Ossipova, S., Ossipov, V., Haukioja, E., et al., Proanthocyanidins of mountain birch leaves: Quantification and properties, Phytochem. Anal., 2001, vol. 12, no. 2, pp. 128–133.

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas, J., Castells, E., Joffre, R., and Tognetti, R., Carbon- based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring, Global Change Biol., 2002, vol. 8, no. 3, pp. 281–288.

    Article  Google Scholar 

  • Richardson, A.D., Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States, Plant Soil, 2004, vol. 260, nos. 1–2, pp. 291–299.

    Article  CAS  Google Scholar 

  • Rowland, A.P. and Roberts, J.D., Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods, Commun. Soil Sci. Plant Anal., 1994, vol. 25, nos. 3–4, pp. 269–277.

    Article  CAS  Google Scholar 

  • Slimestad, R. and Hostettmann, K., Characterization of phenolic constituents from juvenile and mature needles of Norway spruce by means of high performance liquid chromatography–mass spectrometry, Phytochem. Anal., 1996, vol. 7, no. 1, pp. 42–48.

    Article  CAS  Google Scholar 

  • Sundqvist, M.K., Wardle, D.A., Olofsson, E., et al., Chemical properties of plant litter in response to elevation: Subarctic vegetation challenges phenolic allocation theories, Funct. Ecol., 2012, vol. 26, no. 3, pp. 1090–1099.

    Article  Google Scholar 

  • Swain, J. and Hillis, W.E., The phenolic constituents of Prunus domestica: 1. The quantitative analysis of phenolic constituents, J. Sci. Food Agric., 1959, vol. 10, no. 1, pp. 63–68.

    Article  CAS  Google Scholar 

  • Thomas, P.A., El-Barghathi, M., and Polwart, A., Biological flora of the British Isles: Juniperus communis L., J. Ecol., 2007, vol. 95, no. 248, pp. 1404–1440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Artemkina.

Additional information

Original Russian Text © N.A. Artemkina, M.A. Orlova, N.V. Lukina, 2016, published in Ekologiya, 2016, No. 4, pp. 243–250.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemkina, N.A., Orlova, M.A. & Lukina, N.V. Chemical composition of Juniperus sibirica needles (Cupressaceae) in the forest–tundra ecotone, the Khibiny Mountains. Russ J Ecol 47, 321–328 (2016). https://doi.org/10.1134/S106741361604007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741361604007X

Keywords

Navigation