Skip to main content
Log in

Limiting Characteristics of Queueing Systems with Vanishing Perturbations

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

We consider inhomogeneous continuous-time Markov chains with vanishing perturbations. It is proved that, under some natural conditions, the limiting regimes of the initial and perturbed chains coincide. We obtain explicit estimates, which allow construction of the limiting regime of the perturbed chain, and show how these results can be used in the analysis of several known classes of queuing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. B. Gnedenko, “On a generalization of Erlang formulae,” Zastosow. Mat. 12, 239–242 (1971).

    Google Scholar 

  2. B. Gnedenko and A. Soloviev, “On the conditions of the existence of final probabilities for a Markov process,” Math. Oper. Stat. 4, 379–390 (1973).

    MathSciNet  Google Scholar 

  3. J. Liu, P. E. Pare, A. Nedic, C. Y. Tang, C. L. Beck, and T. Basar, “Analysis and control of a continuous-time bi-virus model,” IEEE Trans. Autom. Control 64 (12), 4891–4906 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. E. Pare, J. Liu, C. L. Beck, A. Nedic, and T. Basar, “Multi-competitive viruses over time-varying networks with mutations and human awareness,” Automatica 123, 109330 (2021).

  5. A. I. Zeifman and D. L. Isaacson, “On strong ergodicity for nonhomogeneous continuous-time Markov chains,” Stochastic Processes Appl. 50 (2), 263–273 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ju. L. Daleckiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in Banach Space (Nauka, Moscow, 1970; Am. Math. Soc., Providence, 1974).

  7. A. Zeifman, V. Korolev, and Y. Satin, “Two approaches to the construction of perturbation bounds for continuous-time Markov chains,” Mathematics 8 (2), 253 (2020).

    Article  Google Scholar 

  8. V. Abramov and R. Liptser, “On existence of limiting distribution for time-nonhomogeneous countable Markov process,” Queueing Syst. 46 (3), 353–361 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Zeifman, Y. Satin, I. Kovalev, R. Razumchik, and V. Korolev, “Facilitating numerical solutions of inhomogeneous continuous time Markov chains using ergodicity bounds obtained with logarithmic norm method,” Mathematics 9 (1), 42 (2021). https://doi.org/10.3390/math9010042

    Article  Google Scholar 

  10. E. van Doorn, A. I. Zeifman, and T. L. Panfilova, “Bounds and asymptotics for the rate of convergence of birth-death processes,” Theory Probab. Appl. 54 (1), 97–113 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Fricker, P. Robert, and D. Tibi, “On the rates of convergence of Erlang’s model,” J. Appl. Probab. 36, 1167–1184 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ya. M. Agalarov, “Optimal threshold-based admission control in the M/M/s system with heterogeneous servers and a common queue,” Inf. Primen. 15 (1), 57–64 (2021).

    Google Scholar 

  13. H. Caswell, “Perturbation analysis of continuous-time absorbing Markov chains,” Numer. Linear Algebra Appl. 18 (6), 901–917 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Chen, X. Wu, and J. Zhang, “Markovian bulk-arrival and bulk-service queues with general state-dependent control,” Queueing Syst. 95, 331–378 (2020). https://doi.org/10.1007/s11134-020-09660-0

    Article  MathSciNet  MATH  Google Scholar 

  15. A. I. Zeifman, R. V. Razumchik, Y. A. Satin, and I. A. Kovalev, “Ergodicity bounds for the Markovian queue with time-varying transition intensities, batch arrivals and one queue skipping policy,” Appl. Math. Comput. 395, 125846 (2021).

  16. A. I. Zeifman, “Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes,” Stochastic Processes Their Appl. 59 (1), 157–173 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Marin and S. Rossi, “A queueing model that works only on the biggest jobs,” in European Workshop on Performance Engineering (Springer, Cham, 2019), pp. 118–132.

  18. A. Yu. Veretennikov and M. A. Veretennikova, “On convergence rates for homogeneous Markov chains,” Dokl. Math. 101 (1), 12–15 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Heidergott, H. Leahu, A. Löpker, and G. Pflug, “Perturbation analysis of inhomogeneous finite Markov chains,” Adv. Appl. Probab. 48 (1), 255–273 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Nelson, D. Towsley, and A. N. Tantawi, “Performance analysis of parallel processing systems,” IEEE Trans. Software Eng. 14 (4), 532–540 (1988).

    Article  Google Scholar 

  21. A. Y. Mitrophanov, “Sensitivity and convergence of uniformly ergodic Markov chains,” J. Appl. Probab. 42 (4), 1003–1014 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Y. Mitrophanov, “Connection between the rate of convergence to stationarity and stability to perturbations for stochastic and deterministic systems,” in Proceedings of the 38th International Conference Dynamics Days Europe (DDE 2018) (Loughborough, UK, 2018), pp. 3–7.

  23. S. I. Matyushenko and R. V. Razumchik, “Stationary characteristics of discrete-time Geo/G/1 queue with batch arrivals and one queue skipping policy,” Inf. Primen. 14 (4), 25–32 (2020).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-799.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Zeifman, V. Yu. Korolev, R. V. Razumchik, Ya. A. Satin or I. A. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeifman, A.I., Korolev, V.Y., Razumchik, R.V. et al. Limiting Characteristics of Queueing Systems with Vanishing Perturbations. Dokl. Math. 106, 375–379 (2022). https://doi.org/10.1134/S1064562422050209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562422050209

Keywords:

Navigation