Skip to main content
Log in

Self-Affine Tiling of Polyhedra

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

We obtain a complete classification of polyhedral sets (unions of finitely many convex polyhedra) that admit self-affine tilings, i.e., partitions into parallel shifts of one set that is affinely similar to the initial one. In every dimension, there exist infinitely many nonequivalent polyhedral sets possessing this property. Under an additional assumption that the affine similarity is defined by an integer matrix and by integer shifts (“digits”) from different quotient classes with respect to this matrix, the only polyhedral set of this kind is a parallelepiped. Applications to multivariate wavelets and to Haar systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. A. Cabrelli, C. Heil, and U. M. Molter, Self-affineity and Multiwavelets in Higher Dimensions (Am. Math. Soc., Providence, R.I., 2004).

    MATH  Google Scholar 

  2. K. Gröchenig and W. R. Madych, IEEE Trans. Inf. Theory 38 (2), 556–568 (1992).

    Article  Google Scholar 

  3. K. Gröchenig and A. Haas, J. Fourier Anal. Appl. 1 (2), 131–170 (1994).

    Article  MathSciNet  Google Scholar 

  4. A. Krivoshein, V. Yu. Protasov, and M. A. Skopina, Multivariate Wavelets Frames (Springer, Singapore, 2016).

    MATH  Google Scholar 

  5. C. T. Long, Pac. J. Mat. 23 (1), 107–112 ().

  6. J. Lagarias and Y. Wang, J. Number Theory 57 (1), 181–197 (1996).

    Article  MathSciNet  Google Scholar 

  7. J. Lagarias and Y. Wang, J. Fourier Anal. Appl. 3 (1), 83–102 (1997).

    Article  MathSciNet  Google Scholar 

  8. M. B. Nathanson, Proc. Am. Math. Soc. 34 (1), 71–72 (1972).

    Google Scholar 

  9. K. Nishio and T. Miyazaki, Sci. Rep. 7, 40269 (2017). https://doi.org/10.1038/srep40269

    Article  Google Scholar 

  10. I. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelets Theory (Am. Math. Soc., Providence, R.I., 2011).

    Book  Google Scholar 

  11. P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  12. Y.-M. Yang and Y. Zhang, Discrete Comput. Geom. (2020). https://doi.org/10.1007/s00454-020-00249-1

  13. T. Zaitseva, Sb. Math. 211 (9), 1233–1266 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-04-01227 and 20-01-00469. The second author’s research was supported by a grant from the Government of the Russian Federation for  the state support of scientific research conducted under  the direction of leading researchers, project no. 14.W03.31.0031.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Protasov or T. I. Zaitseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protasov, V.Y., Zaitseva, T.I. Self-Affine Tiling of Polyhedra. Dokl. Math. 104, 267–272 (2021). https://doi.org/10.1134/S1064562421050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562421050112

Keywords:

Navigation